атомно молекулярное учение основывалось на концепции
Атомно-молекулярное учение
Атомно-молекулярное учение — совокупность теоретических представлений естествознания о дискретном строении веществ.
Содержание
История
Античная атомистика
Представление о том, что материя состоит из отдельных частиц — атомов возникло еще в древней Греции. Атомизм был создан представителями древнегреческой философии Левкиппом и его учеником Демокритом.
Становление атомистической гипотезы в XVI—XVIII веках
Атомистическая теория Дальтона
Создание научной теории стало возможно только в XVIII-XIX веках, когда физика и химия стали базироваться на точных экспериментальных данных.
Экспериментальное подтверждение атомной гипотезы нашёл английский химик Джон Дальтон. В начале XIX века Дальтон открыл несколько новых эмпирических закономерностей: закон парциальных давлений (закон Дальтона), закон растворимости газов в жидкостях (закон Генри-Дальтона) и, наконец, закон кратных отношений (1803). Объяснить эти закономерности (прежде всего закон кратных отношений), не прибегая к предположению о дискретности материи, невозможно. В 1808 году Дальтон изложил свою атомистическую гипотезу в труде «Новая система химической философии».
Основные положения теории Дальтона состояли в следующем [1] :
1. Все вещества состоят из большого числа атомов (простых или сложных).
2. Атомы одного вещества полностью тождественны. Простые атомы абсолютно неизменны и неделимы.
3. Атомы различных элементов способны соединяться между собой в определённых соотношениях.
4. Важнейшим свойством атомов является атомный вес.
Уже в 1803 г. в лабораторном журнале Дальтона появилась первая таблица относительных атомных весов некоторых элементов и соединений (атомный вес водорода был принят равным единице). Дальтон ввёл символы химических элементов в виде окружностей с различными фигурами внутри. Впоследствии Дальтон неоднократно корректировал атомные веса элементов, однако для большинства элементов им приводились неверные значения.
Эпоха классической химии
Основные положения
Атомно-молекулярное теория базируется на следующих законах и утверждениях:
Вытекающие законы и положения
Примечания
См. также
Атомно-молекулярное учение | Закон сохранения массы • Закон постоянства состава (закон кратных отношений) • Закон Авогадро (закон объёмных отношений) • Закон эквивалентов |
---|---|
Другие | Периодический закон |
Разделы химии • Хронология химии |
Полезное
Смотреть что такое «Атомно-молекулярное учение» в других словарях:
АТОМНОЕ УЧЕНИЕ — (атомистика) – учение о прерывистом, дискретном (зернистом) строении материи. А. у. утверждает, что материя состоит из отдельных чрезвычайно малых частиц, к рые до конца 19 в. считались неделимыми. Для совр. А. у. характерно признание не только… … Философская энциклопедия
Закон постоянства состава — (Ж.Л. Пруст, 1801 1808гг.) любое определенное химически чистое соединение независимо от способа его получения состоит из одних и тех же химических элементов, причем отношения их масс постоянны, а относительные числа их атомов выражаются целыми… … Википедия
Закон кратных отношений — В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете … Википедия
Корпускулярно-кинетическая теория М. В. Ломоносова — Корпускулярно кинетическая теория тепла выдвинутая в середине XVIII века М. В. Ломоносовым система принципов и взглядов, основанная на ряде теоретических положений, вытекающих из логических рассуждений и математических расчётов, и … Википедия
Авогадро закон — в равных объёмах идеальных газов при одинаковых давлении и темп ре содержится одинаковое число молекул; открыт закон Авогадро в 1811. * * * АВОГАДРО ЗАКОН АВОГАДРО ЗАКОН, один из основных законов идеальных газов (см. ИДЕАЛЬНЫЙ ГАЗ): в равных… … Энциклопедический словарь
Периодический закон — Памятник на территории Словацкого технологического университета (Братислава), посвященный Д. И. Менделееву Периодический закон фундаментальный закон природы, открытый Д. И. Ме … Википедия
Закон Авогадро — одно из важных основных положений химии, гласящее, что «в равных объёмах различных газов, взятых при одинаковых температуре и давлении, содержится одно и то же число молекул». Было сформулировано ещё в 1811 году Амедео Авогадро (1776 1856),… … Википедия
Эквивалент вещества — Эквивалент вещества или Эквивалент это реальная или условная частица, которая может присоединять, высвобождать или другим способом быть эквивалентна катиону водорода в ионообменных реакциях или электрону в окислительно восстановительных… … Википедия
Аналитическая химия — Содержание … Википедия
Атомно молекулярное учение основывалось на концепции
В основе физики и химии лежит атомно-молекулярное учение. Источником для зарождения атомно-молекулярного учения являются труды древнегреческих философов, основным научным методом которых являлись дискуссия, спор. Для поиска первопричин в спорах обсуждались многие логические задачи, одной из которых являлась задача о камне: что произойдет, если начать его дробить? Большинство философов считало, что этот процесс можно продолжать бесконечно, и только Левкипп утверждал, что этот процесс не бесконечен: при дроблении, в конце концов, получится такая частица, дальнейшее деление которой будет просто невозможно. Основываясь на этой концепции, Левкипп (500–440 гг. до н.э.) утверждал: «Материальный мир дискретен, он состоит из мельчайших частиц и пустоты».
Ученик Левкиппа Демокрит (460–370 гг. до н.э.) назвал мельчайшие частицы, из которых состоит вещество, «неделимые», что в переводе на греческий значит «атомы». Демокрит, развивая новое учение – атомистику, приписал атомам такие современные свойства, как размер и форму, способность к движению.
Последователь Демокрита Эпикур (342–270 гг. до н.э.) придал древнегреческой атомистике завершенность, предположив, что у атомов существует внутренний источник движения и они сами способны взаимодействовать друг с другом.
Хотя атомистика древних греков и выглядит удивительно современно, ни одно из ее положений не было доказано. Об учении атомистов не вспоминали почти 20 веков. И только в середине XVIII в. учение было возрождено, развито и впервые применено в химии великим русским ученым М.В. Ломоносовым. Основные положения учения были изложены впервые в 1741 г. в работе «Элементы математической химии».
Несколько позднее атомистическое учение в химии было применено и развито Дальтоном («Новая система химической философии», 1808 г.).
Атомно-молекулярная теория
История развития атомно-молекулярного учения
Исключительное значение для развития химии имело атомно-молекулярное учение, колыбелью которого является Древняя Греция. Атомистика древнегреческих материалистов отделена от нас 25-ве-ковым периодом, однако, логика греков поражает настолько, что философское учение о дискретном строении материи, развитое ими, невольно сливается в сознании с нашими сегодняшними представлениями. Как же зародилась атомистика? Основным научным методом древнегреческих философов являлись дискуссия, спор. Для поиска “первопричин” в спорах обсуждались многие логические задачи, одной из которых являлась задача о камне: что произойдет, если начать его дробить?
Последователь Демокрита Эпикур (342—270 до н. э.) придал древнегреческой атомистике завершенность, предположив, что у атомов существует внутренний источник движения, и они сами способны взаимодействовать друг с другом. Все положения древнегреческой атомистики выглядят удивительно современно, и нам они, естественно, понятны. Ведь любой из нас, ссылаясь на опыт науки, может описать множество интересных экспериментов, подтверждающих справедливость любой из выдвинутых концепций. Но совершенно непонятны они были 20—25 веков назад, поскольку никаких экспериментальных доказательств, подтверждающих справедливость своих идей, древнегреческие атомисты представить не могли. Итак, хотя атомистика древних греков и выглядит удивительно современно, ни одно из ее положений в то время не было доказано. Следовательно ”атомистика, развитая Левкиппом, Демокритом и Эпикуром, была и остается просто догадкой, смелым предположением, философской концепцией, но подкрепленной практикой. Это привело к тому, что одна из гениальных догадок человеческого разума постепенно была предана забвению.
Были и другие причины, из-за которых учение атомистов было надолго забыто. К сожалению, атомисты не оставили после себя систематических трудов, а отдельные записи споров и дискуссий, которые были сделаны, лишь с трудом позволяли составить правильное представление об учении в целом. Главное же заключается е том, что многие концепции атомистики были еретичны и официальная церковь не могла их поддерживать.
Урок №16. Атомно-молекулярное учение
Атомно-молекулярное учение развил и впервые применил в химии великий русский ученый Ломоносов. Сущность учения Ломоносова можно свести к следующим положениям :
Все вещества состоят из «корпускул» (так Ломоносов называл молекулы).
Молекулы состоят из «элементов» (так Ломоносов называл атомы).
Частицы — молекулы и атомы — находятся в непрерывном движении. Тепловое состояние тел есть результат движения их частиц.
Молекулы простых веществ состоят из одинаковых атомов, молекулы сложных веществ из различных атомов.
Атомистическое учение в химии применил английский ученый Джон Дальтон. В своей основе учение Дальтона повторяет учение Ломоносова. Вместе с тем оно развивает его дальше, поскольку Дальтон впервые пытался установить атомные массы известных тогда элементов. Однако Дальтон отрицал существование молекул у простых веществ, что по сравнению с учением Ломоносова является шагом назад. По Дальтону, простые вещества состоят только из атомов, и лишь сложные вещества — из «сложных атомов» (в современном понимании — молекул). Отрицание Дальтоном существования молекул простых веществ мешало дальнейшему развитию химии. Атомно-молекулярное учение в химии окончательно утвердилось лишь в- середине XIX в. Молекула — это наименьшая частица данного вещества, обладающая его химическими свойствами. Химические свойства молекулы определяются ее составом и химическим строением. Атом — наименьшая частица химического элемента, входящая в состав молекул простых и сложных веществ. Химические свойства элемента определяются строением его атома. Отсюда следует определение атома, соответствующее современным представлениям: атом — это электронейтральная частица, состоящая из положительно заряженного атомного ядра и отрицательно заряженных электронов. Согласно современным представлениям из молекул состоят вещества в газообразном и парообразном состоянии. В твердом состоянии из молекул состоят лишь вещества, кристаллическая решетка которых имеет молекулярную структуру.
Основные положения атомно-молекулярного учения можно сформулировать так:
Существуют вещества с молекулярным и немолекулярным строением.
Между молекулами имеются промежутки, размеры которых зависят от агрегатного состояния вещества и температуры. Наибольшие расстояния имеются между молекулами газов. Этим объясняется их легкая сжимаемость. Труднее сжимаются жидкости, где промежутки между молекулами значительно меньше. В твердых веществах промежутки между молекулами еще меньше, поэтому они почти не сжимаются.
Молекулы находятся в непрерывном движении. Скорость движения молекул зависит от температуры. С повышением температуры скорость движения молекул возрастает.
Между молекулами существуют силы взаимного притяжения и отталкивания. В наибольшей степени эти силы выражены в твердых веществах, в наименьшей — в газах.
Молекулы состоят из атомов, которые, как и молекулы, находятся в непрерывном движении.
Атомы одного вида отличаются от атомов другого вида массой и свойствами.
При физических явлениях молекулы сохраняются, при химических, как правило, разрушаются.
У веществ с молекулярным строением в твердом состоянии в узлах кристаллических решето находятся молекулы. Связи между молекулами, расположенными в узлах кристаллической решетки, слабые и при нагревании разрываются. Поэтому вещества с молекулярным строением, как правило, имеют низкие температуры плавления.
У веществ с немолекулярным строением в узлах кристаллических решеток находятся атомы или другие частицы. Между этими частицами существуют сильные химические связи, для разрушения которых требуется много энергии. Поэтому вещества с немолекулярным строением имеют высокие температуры плавления.
Объяснение физических и химических явлений с точки зрения атомно-молекулярного учения. Физические и химические явления получают объяснение с позиций атомно-молекулярного учения. Так, например, процесс диффузии объясняется способность молекул (атомов, частиц) одного вещества проникать между молекулами (атомами, частицами) другого вещества. Это происходит потому, что молекулы (атомы, частицы) находятся в непрерывном движении и между ними имеются промежутки. Сущность химических реакций заключается в разрушении химических связей между атомами одних веществ и в перегруппировке атомов с образованием других веществ.
Атомно молекулярное учение основывалось на концепции
Атомно-молекулярное учение
Ведущей идеей атомно-молекулярного учения, составляющего фундамент современной физики, химии и естествознания, является идея дискретности (прерывности строения) вещества.
В средние века наблюдалось резкое ослабление интереса к античному атомизму. Церковь обвиняла древнегреческие философские учения в утверждении того, что мир возник из случайных сочетаний атомов, а не по воле божьей, как того требовала христианская догма.
Это сделал английский ученый Дж. Дальтон (1766-1844). Он рассматривал атом как мельчайшую частицу химического элемента, отличающуюся от атомов других элементов прежде всего массой. Химическое соединение, по его учению, представляет собой совокупность «сложных» (или «составных») атомов, содержащих определенные, характерные лишь для данного сложного вещества количества атомов каждого элемента. Английский ученый составил первую таблицу атомных масс, но в силу того, что его представления о составе молекул зачастую основывались на произвольных допущениях, основанных на принципе «наибольшей простоты» (например, для воды он принял формулу ОН), эта таблица оказалась неточной.
В 1808 г. французский ученый Ж. Л. Гей-Люссак (1778-1850) сформулировал закон, согласно которому объемы реагирующих газов относятся друг к другу как небольшие целые числа. Однако Дальтон полагал, что в реакциях между газообразными простыми веществами участвуют атомы этих веществ, и считал, на этом основании, что, например, из одного объема азота и одного объема кислорода должен образовываться только один объем оксида азота (NO): N + О → NO, а не два, как экспериментально установил Гей-Люссак. Противоречие между взглядами Дальтона и наблюдениями Гей-Люссака было устранено в 1811 г. итальянским ученым А. Авогадро (1776-1856), который дополнил атомно-молекулярное учение двумя гипотезами, впоследствии полностью подтвердившимися:
1) в равных объемах различных газов при одинаковых температуре и давлении находится одинаковое число молекул;
2) молекулы простых газов содержат четное число атомов, как правило, равное двум.
Открытие Авогадро давало в руки химиков простой и правильный метод определения молекулярных масс: отношение молекулярных масс двух газов равно отношению их плотностей. Но, к сожалению, идеи итальянского ученого 40 с лишним лет оставались незамеченными, хотя многие ученые, как, например, французский физик А. Ампер (1775-1836), высказывали уже аналогичные мысли.
Кроме того, в первой половине XIX в. существовала большая путаница в определении понятий «атом», «молекула» и «эквивалент». Многие химики не верили в возможность определения истинных атомных масс и предпочитали пользоваться эквивалентами, которые можно было найти экспериментально. Поэтому одному и тому же соединению приписывались разные формулы, а это вело к установлению неправильных атомных и молекулярных масс.
Установленные С. Канниццаро атомные массы элементов послужили Д. И. Менделееву основой при открытии периодического закона. Решения Конгресса благотворно повлияли на развитие органической химии, ибо установление формул соединений открыло путь для создания структурной химии.
Таким образом, к началу 1860-х гг. атомно-молекулярное учение сформировалось в виде следующих положений.
2. Молекулы состоят из атомов, которые соединяются друг с другом в определенных отношениях (см. Молекула; Химическая связь; Стехиометрия).
3. Атомы и молекулы находятся в постоянном самопроизвольном движении.
5. В ходе химических реакций происходит изменение состава молекул и перегруппировка атомов, в результате чего образуются молекулы новых химических соединений.
6. Свойства молекул зависят не только от их состава, но и от способа, которым атомы связаны друг с другом (см. Химического строения теория; Изомерия).
Современная наука развила классическую атомно-молекулярную теорию, а некоторые ее положения были пересмотрены.
Было установлено, что атом не является неделимым бесструктурным образованием. Об этом, впрочем, догадывались и многие ученые в прошлом веке.
Оказалось, что количественный состав молекул при одинаковом качественном составе может меняться иногда в широких пределах (например, оксид азота может иметь формулу N2O, NO, N2O3, NO2, N2O4, N2O5, NO3), при этом если рассматривать не только нейтральные молекулы, но и молекулярные ионы, то границы возможных составов расширяются. Так, молекула NO4 неизвестна, но недавно был открыт ион NO 3- 4; не существует молекулы СН5, но известен катион СН + 5 и т.д.
Были открыты так называемые соединения переменного состава, в которых на единицу массы данного элемента приходится различная масса другого элемента, например, Fe0,89-0,95О, TiO0,7-1,3 и т.д.
Было уточнено положение о том, что молекулы состоят из атомов. Согласно современным квантово-механическим представлениям (см. Квантовая химия), у атомов в молекуле более или менее неизменным остается только остов, т.е. ядро и внутренние электронные оболочки, тогда как характер движения внешних (валентных) электронов коренным образом изменяется так, что образуется новая, молекулярная электронная оболочка, охватывающая всю молекулу (см. Химическая связь). В этом смысле никаких неизменных атомов в молекулах нет.
Принимая во внимание эти уточнения и дополнения, следует иметь в виду, что современная наука сохранила рациональное зерно классического атомно-молекулярного учения: идеи о дискретном строении вещества, о способности атомов давать посредством соединения друг с другом в определенном порядке качественно новые и более сложные образования и о непрерывном движении частиц, составляющих вещество.