чертежи для обучения 3d моделированию
3D Модели
Скачать 3D модели, CAD файлы в форматах КОМПАС-3D, SolidWorks, AutoCAD, Inventor и др. Твердотельное 3D-моделирование позволяет увидеть окончательную конструкцию (или деталь) и произвести математические расчеты изделия. Сам процесс создания выглядит как доводка реальной заготовки. Так, если бы проектировщику дали кусок дерева, из которого он отсекал лишнее, стремясь сгладить все неровности, убрать неточности. С одним отличием — с помощью программных средств.
Само моделирование осуществляется в специализированных CAD-системах, начиная с грубой заготовки-образца. В каждый отдельный момент можно увидеть результат в 3D Модели, оценить примерные погрешности и требуемые доработки.
Системы проектирования такие как КОМПАС-3D, AutoCAD или SolidWorks, воспринимают 3D Модель, как набор эскизов с векторами нормалей. Поверхности благодаря общим краям образуют весь объём. Любой крупный объект с лёгкостью разбивается на элементы, для работы и определения любого типа массовых или инерциальных характеристик. Нередко можно воспользоваться уже готовыми разработанными объектами и скачать 3D Модели, либо доработать проект уже разработанной ранее. Работа с ними помогает в итоге получить окончательный объект с требуемыми индивидуальными характеристиками.
Моделирование в CAD-системах выводит инженерный результат — получение чертежей на сам объект в полном объёме требуемом масштабе и комплекте. Архитектор или инженер может дальше оперировать данными для внесения поправок и доработки под какие-либо требования и свои соображения. Стоит отметить, что само твердотельное 3D моделирование не ориентировано на какой-то узкий круг задач. CAD-системы имеют широкое применение.
Софт: SolidWorks 2020 SP4
Состав: 3D модель сборки и деталей.
Состав: Универсальная стойка для 125 болгарки
Состав: Модель навеса
Состав: 3D Сборка с полным каталогом деталей
Софт: SolidWorks 2018
Состав: Модель одной деталью
Состав: 3D сборки, 3D детали
Софт: SolidWorks 2017
Софт: SolidWorks 2019
Софт: КОМПАС-3D 19.0.1
Софт: SolidWorks 2016 SP 3.0
Состав: Сборка, входящие детали
Состав: 3D Сборка в программе Компас 3D и SolidWorks, чертежи на лазерную резку
2D-3D.RU | Чертежи | Проекты | 3D модели
2D-3D.RU | Чертежи | Проекты | 3D модели запись закреплена
Проект 25-ти этажного жилого здания на 184 квартиры
Жилой дом 25-ти этажный в плане с размерами в осях 31,0 х 31,0 м. Здание запроектировано из одной блок-секции.
Первый и второй этаж на отм. 0.000 и +3.600 отведены под торговые помещения. Все квартиры в здании имеют сквозное или угловое проветривание в связи с особенностями местного климата (жаркое влажное лето с северо-западными ветрами). Высота надземных этажей принята 3.0 м. Центрический принцип, заложенный в основу композиции здания, позволил получить планировочное решение, отвечающее природно-климатическим условиям г. Москвы.
2D-3D.RU | Чертежи | Проекты | 3D модели запись закреплена
2D-3D.RU | Чертежи | Проекты | 3D модели запись закреплена
Проект строительства 36 этажного жилого дома.
Учебный проект
Чертежи и расчеты в редактируемых файлах, которые удобно использовать как пример, шаблон и части своей работы.
Показать полностью.
36 этажное жилое здание с постройкой нескольких квартир на каждом этаже.
1 этаж проектируется как административный и ресторанный комплекс.
В здании запроектирован отдельный выход, обеспечивающий необходимые функциональные связи.
Проектируемое здание выполнено из монолитного железобетона и имеет бескаркасную схему с поперечными и продольными несущими стенами. Основной шаг поперечных несущих стен до 6,4 м. Ограждающие конструкции – ненесущие монолитные стены из полистеролбетона в несъёмной опалубке.
Под здание запроектированы монолитные ленточные фундаменты. По которым проходит монолитный армированный ростверк. Фундамент является двух ступенчатым и имеет ширину подошвы 2000 мм.
Наружные стены являются монолитными ненесущими.
Внутренние поперечные и продольные несущие стены запроектированы из монолитного железобетона плотностью 2500 кг/м3, толщина внутренних стен составляет 200 мм.
3D Модели
Скачать 3D модели, CAD файлы в форматах КОМПАС-3D, SolidWorks, AutoCAD, Inventor и др. Твердотельное 3D-моделирование позволяет увидеть окончательную конструкцию (или деталь) и произвести математические расчеты изделия. Сам процесс создания выглядит как доводка реальной заготовки. Так, если бы проектировщику дали кусок дерева, из которого он отсекал лишнее, стремясь сгладить все неровности, убрать неточности. С одним отличием — с помощью программных средств.
Само моделирование осуществляется в специализированных CAD-системах, начиная с грубой заготовки-образца. В каждый отдельный момент можно увидеть результат в 3D Модели, оценить примерные погрешности и требуемые доработки.
Системы проектирования такие как КОМПАС-3D, AutoCAD или SolidWorks, воспринимают 3D Модель, как набор эскизов с векторами нормалей. Поверхности благодаря общим краям образуют весь объём. Любой крупный объект с лёгкостью разбивается на элементы, для работы и определения любого типа массовых или инерциальных характеристик. Нередко можно воспользоваться уже готовыми разработанными объектами и скачать 3D Модели, либо доработать проект уже разработанной ранее. Работа с ними помогает в итоге получить окончательный объект с требуемыми индивидуальными характеристиками.
Моделирование в CAD-системах выводит инженерный результат — получение чертежей на сам объект в полном объёме требуемом масштабе и комплекте. Архитектор или инженер может дальше оперировать данными для внесения поправок и доработки под какие-либо требования и свои соображения. Стоит отметить, что само твердотельное 3D моделирование не ориентировано на какой-то узкий круг задач. CAD-системы имеют широкое применение.
Состав: Модель с тремя деталями с фланцами
Софт: Autodesk Inventor 2021
Софт: SolidWorks 2019
Состав: 3D: Вал, колесо циліндричне, втулка, основа органу, збірка місильного органу
Софт: Autodesk Inventor 2018
Состав: 3D сборка, детали
Состав: Модель одной деталью.
Софт: Autodesk Inventor 13
Состав: 3D сборка плюс составляющие
Софт: Autodesk Inventor 2018
Состав: 3D сборка, детали
Состав: 3D Деталь без истории
Софт: Autodesk Inventor 2021.1.2
Софт: STEP / IGES 203
Софт: SolidWorks 2021
Состав: Комплект в составе 3д сборки, чертежей и спецификации. В архиве также лежит step общей сборки.
Состав: 3D сборка, входящие ДСЕ
Софт: SolidWorks 2018
Софт: КОМПАС-3D 20 Home
Софт: SolidWorks 16
Состав: 3D-сборка, Сборочный чертеж, деталировка, спецфикация
Как создать модель для печати на 3D-принтере: 30 видеоуроков
Печать на 3D-принтере — процесс достаточно простой, если соблюдать правила работы с разными типами материалов и с конкретными моделями принтеров, но — со своими тонкостями. Чтобы избежать непредвиденных затруднений в процессе печати, следует тщательно проработать 3D-модель до загрузки файла на 3D-принтер.
Читайте нашу новую статью, чтобы узнать — как создать с нуля 3D-модель для 3D-принтера, и каких ошибок следует избегать.
Содержание
Какие файлы необходимы для 3D-принтера?
Большинство фотополимерных 3D-принтеров распознают STL-файлы. STL — это формат файла, изначально разработанный компанией 3D Systems для печати предметов методом стереолитографии. STL-файлы описывают только геометрию поверхности трехмерного объекта без какого-либо представления о цвете, текстуре или других атрибутах модели. Слайсеры различных моделей 3D-принтеров поддерживают файлы распространенных форматов OBJ, 3DS, а также проприетарные (FORM, PLG).
Программы для 3D-моделирования
Готовить модели для 3D-печати можно в различных программах, предназначенных для работы с трехмерными объектами. Хотя принцип моделирования объектов во всех программах схожий, существуют различия в подходе к решению задач. Можно использовать профессиональные приложения для отрисовки 3D-рендеров (The Brush, Autodesk Maya и 3ds Max и другие), приложения для инженеров (Fusion 360, Autodesk Solidworks Blender, Компас 3D), а также существуют программы, которые оптимизированы для работы с небольшими 3D-объектами (Sketchup). Выбор ПО зависит от привычек пользователя, поскольку от особенностей интерфейса зависит удобство использования программы. Рассмотрим часто встречающиеся примеры ПО для 3D-моделирования.
Видеоуроки по Fusion 360
На следующем видео показано, как в программе создать модель, на примере опоры-кронштейна для лампы:
В конце следующего длинного видеоролика показано, как на основе чертежа создать 3D-модель станины:
Пример того, как составить 3D-модель рукоятки ножа, используя обычную фотографию, можно увидеть в ролике:
Достаточно сложный пример: проектирование кулона в виде Ленты Мёбиуса, процесс пошагово показан в 14-минутном видео:
Автор канала Make Anything опубликовал получасовой ролик о создании в Fusion 360 квадратной тарелки и высокой вазы. Бонусом автор прикрепил в описании к видео ссылку на готовые stl-файлы этих предметов.
В следующем видео показано, как в Fusion 360 спроектировать составную деталь с шарниром, на примере зажима:
Adafruit Industries сделали 18-минутное видео, в котором показали, как в Fusion 360 наносить объемный рисунок на боковые стенки предметов. В примерах показаны как повторяющиеся симметричные паттерны, так и сложные асимметричные узоры:
Видеоуроки по SolidWorks
Программа SolidWorks имеет русифицированный интерфейс, что может быть удобно, в частности, при создании обучающих курсов по 3D-печати в школах. Меню программы не перегружено пунктами. Разобраться в приложении достаточно просто даже начинающему специалисту.
В следующем примере показано, как спроектировать в SolidWorks переходник для колков гитары:
На видео ниже показано, как спроектировать в SolidWorks изогнутую трубу с фланцами:
Моделирование опорной детали для различных инструментов — тема следующего ролика:
Чтобы смоделировать болт с правильной аккуратной резьбой, необходимо знать несколько трюков в SolidWorks. На канале My Digi Pro объяснили, как выполнить работу быстро:
Если вам необходимо строить объекты сложной формы, вам поможет разобраться в программе большой получасовой видеоурок:
Создайте шестеренку сложной формы. Сделать это вам поможет короткий видеоролик:
Видеоуроки по Компас 3D
Компас 3D — это профессиональная программа для создания 3D-объектов любой сложности. Вероятно, из-за ориентации на профессиональное CAD-моделирование, интерфейс программы получился довольно сложным: с большим количеством пунктов меню и обширными возможностями для настройки.
Если вы только начинаете осваивать Компас 3D, потренируйтесь на моделировании обычного ящичка:
Модель гайки представлена на следующем видео:
Порядок моделирования зубчатого колеса с использованием чертежа:
Подгонка и сборка шарнирного соединения на 3D-модели показана в следующем видео:
Пример сравнительно сложной детали, винта кулера, показан в этом ролике:
Видеоуроки по Blender
Blender — профессиональная программа, которая предназначена для создания сложных трехмерных объектов, в том числе анимированных. Интерфейс программы может показаться достаточно сложным для новичка, но в Интернете можно найти достаточно обучающих материалов по созданию 3D-моделей с ее помощью. Интерфейс программы русифицирован.
Начать освоение Blender можно с моделирования держателя полки (для фиксации на стене):
Поскольку Blender — это полноценный графический редактор, в программе можно создавать сложные арт-объекты. В туториале показано, как за час создать оригинальную модель, у которой будет фактурная поверхность и множество выразительных деталей:
Еще один арт-объект, но на этот раз — абстрактная модель ламы. Отрисовка такой модели занимает существенно меньше времени:
Головной убор для косплея:
Подготовка файла Blender для 3D-печати, пример — серьги-секиры:
Создание 3D-модели осевого держателя на основе чертежа:
Крючок с креплением для стенда с инструментами:
Создание модели сундучка с нуля:
Конвертация чертежей онлайн
В последние годы на рынке появляются и альтернативные методы 3D-моделирования. Например, немецкая компания CAD Schroer разработала комплекс из компьютерной программы MEDUSA4 Personal и онлайн-платформы CSG eSERVICES, которые позволяют превратить чертеж в трехмерный объект с сохранением в STL-файл. В десктопном ПО MEDUSA4 Personal пользователь открывает файл с двухмерным чертежом и запускает через пункт меню Model Reconstruct моделирование 3D-объекта. Сохраненный трехмерный объект в MOD-файле необходимо конвертировать онлайн в STL-файл. Единственным недостатком сервиса является оплата за каждую конверсию поштучно.
Ошибки, которые необходимо предотвратить при 3D-моделировании
Начинающие пользователи обычно приобретают FDM- или SLA/LCD-принтеры начального уровня. В FDM для печати используется пластиковый филамент. В SLA и LCD, фотополимерных технологиях печати — жидкая фотополимерная смола. FDM-принтеры доступнее, а фотополимерные принтеры позволяют создавать гораздо более сложные и детализированные объекты. Рассмотрим самые распространенные ошибки, совершаемые пользователями при подготовке модели к печати.
Добавление поддержки
При создании сложного объекта следует учесть, что участки модели, которые “висят в воздухе”, не могут быть напечатаны без создания поддержек. Поддержки — печатающиеся вместе с моделью опорные конструкции, которые удаляются после завершения печати. Во многих программах поддержки можно создавать автоматически и изменять вручную.
При использовании FDM-принтера с двумя экструдерами поддержки можно печатать из растворимого материала, например — поддержки из HIPS с деталью из ABS, поддержки из PVA с деталью из PLA. Такие поддержки легко удаляются с помощью растворителя, без риска повредить модель в процессе ее очистки от них.
Толщина стенок, диаметр отверстий
При создании легкого ажурного объекта пользователь может ошибиться и создать слишком маленькие отверстия, либо слишком тонкие стенки изделия, которые принтер не сможет воспроизвести корректно. Данная ошибка в большей степени характерна для FDM-моделей, однако и при работе с фотополимерными необходимо учитывать рекомендованные производителем параметры стенок и отверстий.
Мы рекомендуем моделировать стенки объектов с толщиной не менее двух диаметров сопла, для FDM-принтера, а для фотополимерных — не менее полмиллиметра.
Итоги
Как видно из приведенных примеров, процесс моделирования 3D-детали для печати на 3D-принтере легко освоить без прохождения длительных дорогостоящих курсов. В современной информационной среде достаточное количество бесплатных и, что важно — весьма содержательных и простых для понимания обучающих видео. Также в самообразовании может помочь чтение тематических форумов, участие в сообществах 3D-печатников, где принято помогать новичкам и объяснять неочевидные и сложные нюансы.
Купите 3D-принтер в Top 3D Shop и присоединяйтесь к сообществу мейкеров-3D-печатников — людей, самостоятельно создающих полезные и интересные вещи.
Технология создания 3D образцов
Всем добрый день!
Я 3D моделированием в различных сферах занимаюсь уже лет 10, а 3D печатью только третий год. Недавно вступил в это сообщество по 3d печати, и посмотрев блок не обнаружил описание общей технологии. Для профессионалов технология понятна, а вот у новичков или интересующихся людей возникает много вопросов. Вот я и решил поделиться своим опытном FDM 3d печати — не судите строго.
Первое с чего я начинаю это с получения исходных данных. Все зависит от задачи это могут быть обычные замеры, фото или 3D скан поверхности.
Приведу пример на базе создания накладки на суппорт.
Самый информативный способ получения данных — отсканировать суппорт. Можно так же сделать фото, а в последствии отмасштабировать в 3D редакторе.
Я использую сканер sense 3d, мне его погрешности хватает для создания качественных моделей.
Далее производим моделирование. Дизайн и редактор зависят от индивидуальных предпочтений. Можно сделать что угодно и в чем угодно.
Вот я построил 3D модель.
Далее нужно подготовить 3D модель к печати. Для этого экспортируем 3D модель в STL файл и открываем с специальной программе – слайсере, которая производит нарезку 3D модели на слои. Я пользуюсь несколькими программами – одна из них Cura – наиболее распространенная. Так же стоит обратить внимание на Simplify3D (она платная), но в ней очень хорошо формируются поддержки, в том числе вручную.
Здесь стоит отметить, что на FDM 3D принтерах можно печатать одним материалом, либо несколькими (как правило это 2 материала). Печать сложной детали с поддержками нависающих частей будет более качественной на 2-х экструдером FDM 3D принтере, когда одним материалом печатается деталь, а вторым поддержки. После печати, поддержки отделяются и на выходе получаем готовую деталь. Так же советую печатать детали для автомашин только ABS пластиком, т.к. он держит температуру, всякие SBS, PLA и т.п. даже летнего солнышка не выдержат — плавяться.
Это все нужно учесть в слайсере при подготовке детали к печати. Ну и конечно не стоит забывать по параметры 3D принтера: размер стола, температура стола и сопла и т.п.
Когда сформирован файл 3d модели, в большинстве случаев это *.Gcode можно начинать печать.
Вот несколько примеров:
После удаления поддержек получаем готовый экземпляр. Далее можно проводить обработку.
Здесь стоит отметить, что процесс/длительность/интенсивность обработки обратно пропорциональна качеству печати. А качество печати зависит от 3d принтера — как правило, чем дороже принтер, тем качественнее 3d печать вы получаете, поскольку в более дорогих моделях применяется:
1) Более качественная механика – это линейность направляющих, отсутствие люфтов, воблинга и т.п.
2) Более жёсткий корпус, например на моем Hori Gold корпус из 2-х мм стали, весит более 20 кг.
3) Закрытая камера – это не маловажно для ABS пластика.
4) Более продуманный конструктив экструдера.
Для домашних целей подойдет принтер из за 15 т.р. но не стоит требовать от него сверх качественной печати. Я общался с многими людьми, которые покупали дешевый принтер, разочаровывались и начинали его апгрейдить, в результате совокупный ценник в разы вырастал.
Процесс обработки как правило состоит из химической обработки и физической обработки. Цель химической обработки лучше склеить слои. Например для ABS деталей, применяют обработки парами ацетона — помещают деталь в герметичную емкость с ацетоном и нагревают. Если так сильно не заморачиваться, то можно поверхность детали обработать ацетоном.
Далее можно шкурить, красить и т.п. В результате можно получить очень качественную деталь.