что такое паренхима головного мозга
Ультразвуковое исследование мозга новорожденных детей (нормальная анатомия)
УЗИ сканер WS80
Идеальный инструмент для пренатальных исследований. Уникальное качество изображения и весь спектр диагностических программ для экспертной оценки здоровья женщины.
Показания для проведения эхографии мозга
Акустическим окном для исследования мозга может служить любое естественное отверстие в черепе, но в большинстве случаев используют большой родничок, поскольку он наиболее крупный и закрывается последним. Маленький размер родничка значительно ограничивает поле зрения, особенно при оценке периферических отделов мозга.
Для проведения эхоэнцефалографического исследования датчик располагают над передним родничком, ориентируя его так, чтобы получить ряд корональных (фронтальных) срезов, после чего переворачивают на 90° для выполнения сагиттального и парасагиттального сканирования. К дополнительным подходам относят сканирование через височную кость над ушной раковиной (аксиальный срез), а также сканирование через открытые швы, задний родничок и область атланто-затылочного сочленения.
По своей эхогенности структуры мозга и черепа могут быть разделены на три категории:
Нормальные варианты мозговых структур
Борозды и извилины. Борозды выглядят как эхогенные линейные структуры, разделяющие извилины. Активная дифференцировка извилин начинается с 28-й недели гестации; их анатомическое появление предшествует эхографической визуализации на 2-6 нед. Таким образом, по количеству и степени выраженности борозд можно судить о гестационном возрасте ребенка.
Сосудистые сплетения могут быть источником внутрижелудочковых кровоизлияний у доношенных детей, тогда на эхограммах видна их четкая асимметрия и локальные уплотнения, на месте которых затем образуются кисты.
Сильвиев водопровод и IV желудочек. Сильвиев водопровод (aquaeductus cerebri) представляет собой тонкий канал, соединяющий III и IV желудочки (см. рис. 1), редко видимый при УЗ исследовании в стандартных позициях. Его можно визуализировать на аксиальном срезе в виде двух эхогенных точек на фоне гипоэхогенных ножек мозга.
IV желудочек (ventriculus quartus) представляет собой небольшую полость ромбовидной формы. На эхограммах в строго сагиттальном срезе он выглядит малым анэхогенным треугольником посередине эхогенного медиального контура червя мозжечка (см. рис. 1). Передняя его граница отчетливо не видна из-за гипоэхогенности дорсальной части моста. Переднезадний размер IV желудочка в неонатальном периоде не превышает 4 мм.
Мозолистое тело. Мозолистое тело (corpus callosum) на сагиттальном срезе выглядит как тонкая горизонтальная дугообразная гипоэхогенная структура (рис. 2), ограниченная сверху и снизу тонкими эхогенными полосками, являющимися результатом отражения от околомозолистой борозды (сверху) и нижней поверхности мозолистого тела. Сразу под ним располагаются два листка прозрачной перегородки, ограничивающие ее полость. На фронтальном срезе мозолистое тело выглядит тонкой узкой гипоэхогенной полоской, образующей крышу боковых желудочков.
Полость прозрачной перегородки и полость Верге. Эти полости расположены непосредственно под мозолистым телом между листками прозрачной перегородки (septum pellucidum) и ограничены глией, а не эпендимой; они содержат жидкость, но не соединяются ни с желудочковой системой, ни с субарахноидальным пространством. Полость прозрачной перегородки (cavum cepti pellucidi) находится кпереди от свода мозга между передними рогами боковых желудочков, полость Верге расположена под валиком мозолистого тела между телами боковых желудочков. Иногда в норме в листках прозрачной перегородки визуализируются точки и короткие линейные сигналы, происходящие от субэпендимальных срединных вен. На корональном срезе полость прозрачной перегородки выглядит как квадратное, треугольное или трапециевидное анэхогенное пространство с основанием под мозолистым телом. Ширина полости прозрачной перегородки не превышает 10-12 мм и у недоношенных детей шире, чем у доношенных. Полость Верге, как правило, уже полости прозрачной перегородки и у доношенных детей обнаруживается редко. Указанные полости начинают облитерироваться после 6 мес гестации в дорсовентральном направлении, но точных сроков их закрытия нет, и они обе могут обнаруживаться у зрелого ребенка в возрасте 2-3 мес.
Базальная (c. suprasellar) цистерна включает в себя межножковую, c. interpeduncularis (между ножками мозга) и хиазматическую, c. chiasmatis (между перекрестом зрительных нервов и лобными долями) цистерны. Цистерна перекреста выглядит пятиугольной эхоплотной зоной, углы которой соответствуют артериям Виллизиева круга.
Ножки мозга (pedunculus cerebri), мост (pons) и продолговатый мозг (medulla oblongata) расположены продольно кпереди от мозжечка и выглядят гипоэхогенными структурами.
Паренхима. В норме отмечается различие эхогенности между корой мозга и подлежащим белым веществом. Белое вещество чуть более эхогенно, возможно, из-за относительно большего количества сосудов. В норме толщина коры не превышает нескольких миллиметров.
Стандартные эхоэнцефалографические срезы
Рис. 4. Плоскости коронального сканирования (1-6).
Что такое паренхима головного мозга
Паренхиматозные поражения встречаются примерно в 10% всех травм головы и при трети всех серьезных травм. Большинство из этих поражений имеет (и сохраняет) небольшой масс-эффект и может лечиться консервативно. Тем не менее, некоторые из них развивают эффект массы, создавая риск ухудшения, вклинения и, соответственно, смерти мозга.
В отличие от эпидуральной и острой субдуральной гематомы, которые обычно присутствуют в течение первых 8 часов после травмы, паренхиматозные поражения, как правило, развиваются иногда даже в течение нескольких дней, затрудняя принятие решения об операции. Таким образом, при обследовании необходимо сосредоточиться на выявлении пациентов, которые имеют риск развития такого повреждения, на показаниях к операции и на сроках проведения.
а) Определение. Черепно-мозговые повреждения можно разделить на диффузные и очаговые. В большинстве случаев встречается их комбинация. Различие между ушибом, травматической внутримозговой гематомой и инфарктом является несколько искусственным. С практической точки зрения такое поражение лучше классифицировать в соответствии с их проявлением на КТ как гиперденсное, гиподенсное или смешанное.
Большинство из этих поражений визуализируются на первичной КТ. Поскольку примерно 30% из них увеличиваются в течение нескольких часов или дней после первоначальной травмы, нельзя недооценивать необходимость повторных КТ и непрерывный мониторинг таких больных. Особым случаем является отсроченное внутричерепное кровоизлияние, развивающееся примерно в 2% случаев в области сначала «нормальной» ткани мозга.
Особое внимание должно быть уделено малым ушибам, которые сопровождаются внеосевыми гематомами, так как значительное количество этих поражений будет «расти» после эвакуации гематом. Поэтому желательно выполнять КТ в течение 4-8 часов после оперативного вмешательства.
б) Показания к операции при повреждении паренхимы мозга. Исход при паренхиматозных повреждениях определяет ряд прогностических факторов: локализация, размер, масс-эффект, сроки операции, ШКГ до операции и многое другое. Такие прогностические факторы помогают выявить пациентов с риском развития транстенториального вклинения и служат руководством для принятия решения об оперативном вмешательстве. Кроме того, при принятии решения полезны постоянный мониторинг ВЧД и повторные КТ.
Показаниями к хирургическому лечению являются:
— Постепенное ухудшение неврологических симптомов.
— Повышенное ВЧД, устойчивое к консервативному лечению.
— Признаки масс-эффекта при повторном выполнении КТ.
в) Хирургическая техника. Несмотря на попытки эвакуировать такие поражения стереотаксической аспирацией, лучшим лечением по-прежнему остается трепанация черепа и удаление.
Декомпрессионная краниоэктомия. В соответствии с рекомендациями EBIC и ABIC по тяжелой травме головы, декомпрессионная краниоэктомия является терапевтической опцией при отеке головного мозга на фоне диффузного поражения, не реагирующего на обычные терапевтические мероприятия. Данная методика пережила возрождение в течение последнего десятилетия. В то время как исследования I класса на эту тему по-прежнему отсутствуют, в неконтролируемых проспективных исследованиях получены достоверные подтверждения, что такая операция улучшает результат в целом, а также оказывает благотворное влияние на различные физиологические параметры, которые, как известно, являются независимыми прогностическими факторами плохого исхода.
Дополнительный объем, достигнутый этой процедурой, сдвигает кривую ВЧД давление-объем вправо.
1. Показания. «Терапевтическая» декомпрессивная краниоэктомия должна быть выполнена, как вторая линия терапии у пациентов с повышенным ВЧД, не поддающимся обычной лекарственной терапии. Есть соображения, что пороги ВЧД у этих пациентов могут варьировать в зависимости от их клинического состояния. Улучшает ли «профилактическая» декомпрессия исход сомнительно, но есть некоторые свидетельства того, что такая декомпрессия тоже может привести к хорошим клиническим результатам.
Такая процедура может быть единственным доступным методом предотвращения развития вклинения в условиях отсутствия палаты интенсивной терапии и средств мониторинга. Лучшие клинические результаты достигаются у молодых пациентов, но в литературе отсутствуют данные об определенном возрастном пределе. Первичные и вторичные признаки повреждения ствола мозга (фиксированные и расширенные зрачки; ШКЕ 3 балла)—явные противопоказания для этой процедуры.
2. Хирургическая техника. Для хирургической декомпрессии применяются различные методы (бифронтальная, височная/подвисочная, гемикраниоэктомия, с удалением или без удаления тканей головного мозга, с дуропластикой или без нее). Мы выполняем стандартизированную гемикраниоэктомию с подвисочной декомпрессией в сочетании с дуропластикой без удаления тканей головного мозга. Если отек является односторонним, процедура ограничивается пораженной стороной. При генерализованном отеке декомпрессия выполняется с двух сторон.
3. Результаты. С учетом вышеописанных показаний и противопоказаний, примерно 70% пациентов, перенесших эту процедуру выживет, а две трети выживших будет иметь благоприятный исход (ШКГ 4 или 5).
Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021
Микрососудистое УЗИ паренхимы головного мозга новорожденных: возможности, применение и нормальная визуализация с помощью SMI – Superb microvascular imaging
Авторы: Katharina Goeral, Azadeh Hojreh, Gregor Kasprian, Katrin Klebermass-Schrehof, Michael Weber, Christian Mitter, Angelika Berger, Daniela Prayer, Peter C. Brugger, Klara Vergesslich-Rothschild, and Janina M.
Оценить выполнимость SMI головного мозга новорожденного и описать нормальные особенности визуализации.
Мы провели транскраниальное ультразвуковое исследование с SMI у 19 здоровых новорожденных. SMI проводилась в соответствии со структурированным протоколом обследования с использованием двух линейных датчиков 18 МГц и 14 МГц. Поверхностные и глубокие снимки были получены в корональной и сагиттальной плоскостях, используя левую и правую верхнюю лобную извилину в качестве анатомических ориентиров.
Введение
Внутрипаренхиматозная сосудистая сеть мозга состоит из иерархической сети мелких артерий, вен и капилляров. Главные артериальные стволы снабжают головной мозг, разветвляясь на перфорантные артерии проксимально и пиальные кортикальные артерии – периферически. Пиальные артерии расходятся на внутрикортикальные, подкорковые и медуллярные артерии, которые снабжают кору, в то время как белое вещество головного мозга снабжается исключительно медуллярными артериями.
Помимо инвазивных процедур, визуализация сосудов головного мозга новорожденных возможна in vivo с использованием КТ и МРТ. КТ ограничивается использованием радиации и необходимостью для внутривенного введения контрастного вещества и МРТ из-за сложной логистики и применения седативных препаратов при визуализации новорожденных. При диаметрах 100–200 мкм внутрипаренхимальные сосуды головного мозга обычно остаются ниже пространственного разрешения методов клинической визуализации, включая КТ и МРТ (напряженность поля до 3 Тесла).
У новорожденных с открытыми родничками транскраниальное УЗИ (ТУЗИ) используется в качестве метода визуализации первой линии благодаря широкой доступности с возможностью использования у кровати, низкой стоимостью, безопасным для пациента профилем безопасности и высоким разрешением изображения.
Недавно УЗИ сосудистой системы получило новый поворот благодаря созданию инновационного метода, который называется SMI. SMI развился как новый инструмент для неинвазивной визуализации микроциркуляторного русла без использования внутривенного контрастного материала. Этот метод использует расширенное подавление помех и обрабатывает доплеровские сигналы с низким расходом, которые в противном случае фильтруются и удаляются как «шумы». Преимуществами являются высокое разрешение и частота кадров, а также визуализация низкоскоростного потока. Доступны два режима: монохромный SMI (mSMI) и цветной SMI (cSMI). cSMI отображает компоненты с низким расходом в цвете, наложенном на серое изображение с высоким временным и пространственным разрешением одновременно. mSMI показывает микроциркуляторное русло с еще более высокой чувствительностью, вычитая анатомический фон.
Ишикава и соавторы использовали SMI для визуализации опухолевых сосудов и краев опухоли во время операции на открытом мозге у взрослых. Что касается применения в педиатрии, SMI оказался полезным в оценке пузырно-уретрального рефлюкса, а также в неопущенных яичках.
В настоящее время мало известно о морфологии микрососудистой структуры человеческого мозга in vivo после рождения. Наше исследование направлено на визуализацию микрососудов головного мозга новорожденных с помощью ультразвукового исследования SMI. Во-первых, выполнимость и воспроизводимость SMI оценивается в когорте новорожденных. Во-вторых, описаны нормальные особенности SMI в здоровом мозге новорожденных.
Методы
Мы провели проспективное одноцентровое исследование изображений новорожденных, родившихся в срок: для основного исследования в отделение годичной педиатрии и подростковой медицины Медицинского университета Вены, Австрия, было включено 19 новорожденных в течение 1 года. Критерии включения были определены следующим образом: доношенные новорожденные с хорошей постнатальной адаптацией без неврологических нарушений или подозрений на церебральные патологии. История болезни во время беременности должна была быть ничем не примечательной, пренатальное УЗИ центральной нервной системы должно было быть нормальным. Поэтому новорожденные с хромосомными аномалиями, постнатальным неврологическим дефицитом или любым поражением головного мозга, диагностированным пренатальным или постнатальным УЗИ, были исключены из участия в исследовании. Информированное согласие было получено у всех пациентов. Исследование было одобрено Комитетом по этике Медицинского университета Вены.
Все участники прошли стандартное транскраниальное ультразвуковое исследование с использованием сканера Toshiba Aplio 400 в течение первых недель жизни в бодрствующем состоянии. Микроконвексный датчик (11 МГц) был помещен на открытый передний родничок для получения коронального и сагиттального стандартных изображений. Кроме того, было получено допплеровское изображение и резистивные показатели из внутренней сонной артерии и передней мозговой артерии.
ПРАВИЛЬНО ЛИ ВЫ УХАЖИВАЕТЕ ЗА УЗ-АППАРАТОМ?
Скачайте руководство по уходу прямо сейчас
SMI – получение и интерпретация изображений
SMI было выполнено и задокументировано с использованием предварительно определенного протокола обследования двумя сертифицированными специалистами педиатрическими рентгенологами, с более чем 5-летним опытом в ультразвуковом исследовании новорожденных и анатомическими знаниями ангиоархитектуры паренхимы головного мозга. Протокол обследования включал поверхностное и глубокое сканирование. Поверхностные сканы были получены с использованием линейного 18 МГц датчика и захватили корональные и сагиттальные плоскости левой и правой верхней лобной извилины( F1) (рис. 1 и 2). F1 был выбран из-за близости к передней части родничка и, таким образом, оптимальной сонографической доступности. Максимальная глубина увеличения при поверхностном сканировании составляла 2,5 см. Глубина поверхностного сканирования составила 1,7 см. Настройки SMI составляли 7,2 МГц (доплеровская частота), 21 кГц (импульсно-волновая частота) и усиление цвета 45–50. Глубокие сканы были получены только в корональной плоскости с использованием линейного датчика 14 МГц (рис. 3). SMI глубина глубокого сканирования составляла 5–6 см. Настройки SMI составляли 7 МГц (доплеровская частота), 9 кГц (импульсно-волновая частота) и усиление цвета 45–50. Для типичного ультразвукового исследования параметры безопасности были следующими: механический индекс 0,8–1,5, тепловой индекс кости 0,6–0,8 и тепловой индекс мягких тканей 0,6–0,8.
Рисунок 1: Поверхностное сканирование: корональный вид правой верхней лобной извилины в режиме B (a), монохромный SMI (b) и схематическое изображение (c). b и c демонстрируют кортикальные (короткая стрелка) и медуллярные (стрелка) сосуды
Рисунок 2: Поверхностное сканирование: сагиттальный вид правой верхней лобной извилины в режиме B (a), монохромный SMI (b) и схематическое изображение (c). b и c демонстрируют кортикальные (короткая стрелка) и медуллярные (стрелка) сосуды
Рисунок 3: Глубокое сканирование: корональное изображение в B-режиме (a), монохромный SMI (b) и схематическое изображение (c). b и c демонстрируют экстрастриатарные (корковые [короткая стрелка], медуллярные [стрелка]) и стриатарные (тонкая стрелка) сосуды.
Все предварительно определенные виды были отображены с помощью монохромного и цветного SMI с использованием настроек, предоставленных производителем. Видеопоследовательности в оттенках серого были получены и задокументированы дважды подряд, в то время как цветовые последовательности были запечатлены и задокументированы один раз для каждой анатомической области. Минимальная продолжительность каждой видеопоследовательности составляла 5 с. Видеопоследовательности SMI были сохранены и просмотрены с использованием AGFA PACS. На основании наблюдений радиологических признаков, сделанных во время получения изображений, была разработана и использована структурированная полуколичественная схема считывания: по этой схеме сосуды классифицировались как видимые или невидимые. В частности, мы различали две основные сосудистые территории: экстрастриарные сосуды (снабжающие кору и белое вещество) и стриарные сосуды (снабжающие хвостатое и лентиформное ядро). Эти сосуды были оценены как видимые, если они выглядели как яркие эхогенные криволинейные структуры на видеопоследовательностях mSMI или как красные криволинейные структуры на последовательностях cSMI.
Рисунок 4: Сравнение УЗИ и SMI: глубокий корональный обзор в режиме B (a), цветное ультразвуковое допплеровское исследование (b, c) и сSMI (d)
Корковые микрососуды выглядят как короткие гиперэхогенные, параллельные полосы, перпендикулярные поверхности мозга на корональных и сагиттальных изображениях. Медуллярные микрососуды проявляются как криволинейные гиперэхогенности в белом веществе, демонстрирующие характерную «фонтаноподобную» морфологию на корональных изображениях. На сагиттальных сканах они показывали прямое направление. Глубокий коронарный SMI показал полосатые микрососуды, выглядящие как криволинейные гиперэхогенные полосы в форме цветка лотоса, проходящие через таламус и базальные ганглии (рис. 5).
Рисунок 5: сSMI: корональные (а), сагиттальные (б) и глубокие корональные (с) изображения, демонстрирующие экстрастриатарные и стриатарные сосуды, наложенные на B-режим
С клинической точки зрения следует подчеркнуть, что существует большой потенциал для использования SMI для исследования головного мозга новорожденных: гипоксическая ишемическая энцефалопатия, церебральные пороки развития, инфекции и преждевременные роды являются состояниями, связанными с микрососудистыми нарушениями. После ишемии SMI может позволить выявить и контролировать постгипоксическую гиперперфузию (рис. 6). У недоношенных новорожденных с внутрижелудочковым кровоизлиянием SMI может позволить раннее выявление венозного скопления и перивентрикулярного инфаркта после внутрижелудочкового кровоизлияния.
Рисунок 6: Патологический пример: пациент 3-месячного возраста с митохондриальной болезнью (болезнь Ли). В то время как МРТ показала метаболические инфаркты и сигнальные изменения базальных ганглиев и коры (a; белая стрелка), в коронарной mSMI наблюдалась постгипоксическая кортикальная гиперперфузия (c и d; желтая стрелка). Кроме того, SMI показал удлиненные и извилистые медуллярные микрососуды (f и g; желтая стрелка), которые были подтверждены гистологией (не показано)
Очаги в головном мозге на МРТ
Магнитно-резонансная томография является безболезненным и информативным способом исследования головного мозга. Послойное МР-сканирование позволяет детально рассмотреть все участки органа, оценить их структуру. С помощью определенных последовательностей можно подробно изучить белое и серое вещество, сосуды, желудочковую систему.
МРТ считают эффективным методом выявления очаговых поражений мозга. К таковым относят ограниченные участки с нарушенной структурой внутри вещества органа. Подобные изменения часто сопровождаются масс-эффектом, отеком, деформацией окружающих областей. Очаги в головном мозге на МРТ выглядят как зоны изменения МР-сигнала. По специфическим признакам, локализации, размерам и степени влияния на окружающие структуры рентгенолог может сделать предположения о характере патологии. Пользуясь перечисленными сведениями, врач ставит диагноз, составляет для пациента прогноз и подбирает лечение.
Очаги на МРТ головного мозга: что значит?
Результатом магнитно-резонансной томографии является серия послойных снимков исследуемой области. На изображениях здоровые ткани выглядят как чередующиеся светлые и темные участки, что зависит от концентрации в них жидкости и применяемой импульсной последовательности. По срезам врач-рентгенолог оценивает:
Липома четверохолмной цистерны на МРТ (обведена кругом)
МРТ назначают, если у пациента наблюдаются неврологические отклонения, обусловленные поражением мозговой ткани. Симптомами могут быть:
Магнитно-резонансная томография головы позволяет врачу точно определить локализацию очаговых изменений и выяснить природу плохого самочувствия у пациента. В ДЦ «Магнит» на вооружении специалистов новейшие аппараты для МР-сканирования, которые позволяют с высокой достоверностью провести исследование.
Виды очагов на МРТ головы
Цвет получаемого изображения нормальных мозговых структур и патологических изменений зависит от используемой программы. При сканировании в ангиорежиме, в том числе с применением контраста, на снимках появляется разветвленная сеть артерий и вен. Очаговые изменения бывают нескольких типов, по их характеристикам врач может предположить природу фокусов.
При патологии мозгового вещества нарушаются свойства пораженных фокусов, что проявляется резким изменением МР-сигнала по сравнению со здоровыми областями. Применение определенных последовательностей (диффузионно-взвешенных, FLAIR и пр.) или контрастирования позволяет более четко визуализировать локальные изменения. То есть, если рентгенолог видит на результатах МРТ единичный очаг, для более подробного его изучения будут применены разные режимы сканирования либо контрастирование.
При сравнении изменений со здоровыми участками мозга выделяют гипер-, гипо- и изоинтенсивные зоны (соответственно яркие, темные и такие же по своему цвету, как рядом расположенные структуры).
Абсцесс головного мозга на МРТ (указан стрелкой)
Гиперинтенсивные очаги
Выявление гиперинтенсивных, т.е. ярко выделяющихся на МР-сканах, очагов заставляет специалиста подозревать опухоль головного мозга, в том числе метастатического происхождения, гематому (в определенный момент от начала кровоизлияния), ишемию, отек, патологии сосудов (каверномы, артерио-венозные мальформации и пр.), абсцессы, обменные нарушения и т.п.
Опухоль головного мозга на МРТ (указана стрелкой)
Субкортикальные очаги
Поражение белого вещества головного мозга обычно характеризуют, как изменения подкорковых структур. Выявленные при МРТ субкортикальные очаги говорят о локализации повреждения сразу под корой. Если обнаруживают множественные юкстакортикальные зоны поражения, есть смысл подозревать демиелинизирующий процесс (например, рассеянный склероз). При указанной патологии деструктивные изменения происходят в различных участках белого вещества, в том числе прямо под корой головного мозга. Перивентрикулярные и лакунарные очаги обычно выявляют при ишемических процессах.
Очаги глиоза
При повреждении мозговой ткани включаются компенсаторные механизмы. Разрушенные клетки замещаются структурами глии. Последняя обеспечивает передачу нервных импульсов и участвует в метаболических процессах. За счет описываемых структур мозг восстанавливается после травм.
Выявление глиозных очагов указывает на предшествующее разрушение церебрального вещества вследствие:
По количеству и размерам измененных участков можно судить о масштабах повреждения мозга. Динамическое наблюдение позволяет оценить скорость прогрессирования патологии. Однако изучая зоны глиоза нельзя точно установить причину разрушения нервных клеток.
Очаги демиелинизации
Некоторые заболевания нервной системы сопровождаются повреждением глиальной оболочки длинных отростков нейронов. В результате патологических изменений нарушается проведение импульсов. Подобное состояние сопровождается неврологической симптоматикой различной степени интенсивности. Демиелинизация нервных волокон может быть вызвана:
Обычно очаги демиелинизации выглядят как множественные мелкие участки гиперинтенсивного МР-сигнала, расположенные в одном или нескольких отделах головного мозга. По степени их распространенности, давности и одновременности возникновения врач судит о масштабах развития заболевания.
Очаг демиелинизации на МРТ
Очаг сосудистого генеза
Недостаточность мозгового кровообращения являются причиной ишемии церебрального вещества, что ведет к изменению структуры и потере функций последнего. Ранняя диагностика сосудистых патологий способна предотвратить инсульт. Очаговые изменения дисциркуляторного происхождения обнаруживают у большинства пациентов старше 50 лет. В последующем такие зоны могут стать причиной дистрофических процессов в мозговой ткани.
Лакунарный инфаркт головного мозга на МРТ (указан стрелкой)
Заподозрить нарушения церебрального кровообращения можно по очаговым изменениям периваскулярных пространств Вирхова-Робина. Последние представляет собой небольшие полости вокруг мозговых сосудов, заполненные жидкостью, через которые осуществляется трофика тканей и иммунорегулирующие процессы (гематоэнцефалический барьер). Появление гиперинтенсивного МР-сигнала указывает на расширение периваскулярных пространств, поскольку в норме они не видны.
Иногда при МРТ мозга обнаруживаются множественные очаги в лобной доле или в глубоких отделах полушарий, что может указывать на поражение церебральных сосудов. Ситуацию часто проясняет МР-сканирование в ангиорежиме.
Очаги ишемии на МРТ
Очаги ишемии
Нарушения мозгового кровообращения приводят к кислородному голоданию тканей, что может спровоцировать их некроз (инфаркт). Ишемические очаги при Т2 взвешенных последовательностях выглядят как зоны с умеренно гиперинтенсивным сигналом неправильной формы. На более поздних сроках при проведении в Т2 ВИ или FLAIR режиме МРТ единичный очаг приобретает вид светлого пятна, что указывает на усугубление деструктивных процессов.
Что означают белые и черные пятна на снимках МРТ?
Зоны измененного МР-сигнала могут означать:
Врач-рентгенолог описывает интенсивность сигнала, размеры и локализацию очага. С учетом полученных сведений, жалоб пациента и данных предыдущих обследований специалист может предположить природу патологических изменений.
Острый рассеянный энцефаломиелит на МРТ
Причины возникновения очагов на МРТ головного мозга
Если при МРТ головного мозга выявлены очаги, их расценивают как симптомы патологии органа. Зоны гипер- или гипоинтенсивного МР-сигнала свидетельствуют о нарушении структуры определенного участка церебрального вещества. Очаговые изменения могут быть единичными или множественными, крупными, мелкими, диффузными и т.п.. Подобное наблюдается при:
Очаговые изменения могут быть результатом некроза, гнойных процессов, ишемии, воспаления тканей, разрушения нервных волокон и т.п. Фокальная патология на МР-сканах почти всегда свидетельствует о развитии серьезного заболевания, а в некоторых случаях указывает на опасность для жизни больного.
МРТ головного мозга
МРТ «Повышение давления»
Показания к МРТ головного мозга
МРТ недорого
МРТ головы цены в СПб
МРТ с пластиной в голове