что является основой учения в рамках системно деятельностного подхода на уроке математики

Системно- деятельностный подход на уроках математики

Ищем педагогов в команду «Инфоурок»

C истемно – деятельностный подход при моделировании учебных занятий по математике, в рамках ФГОС нового поколения

Пахмутова Ольга Павловна

МБОУ «Средняя общеобразовательная школа №24 г. Йошкар-Ола»

Основная идея системно – деятельностного подхода состоит в том, что новые знания не даются в готовом виде. Дети «открывают» их сами в процессе самостоятельной исследовательской деятельности. Они становятся маленькими учеными, делающими свое собственное открытие. Задача учителя при введении нового материала заключается не в том, чтобы все наглядно и доступно объяснить, показать и рассказать. Учитель должен организовать исследовательскую работу детей, чтобы они сами додумались до решения проблемы урока и сами объяснили, как надо действовать в новых условиях. Основные задачи образования сегодня – не просто вооружить ученика фиксированным набором знаний, а сформировать у него умение и желание учиться всю жизнь, работать в команде, способность к самоизменению и саморазвитию на основе рефлексивной деятельности. Данный подход в обучении направлен на развитие каждого ученика, на формирование его индивидуальных способностей, а также позволяет значительно упрочить знания и увеличить темп изучения материала без перегрузки обучающихся. При этом создаются благоприятные условия для их разноуровневой подготовки. Технология деятельностного метода обучения не разрушает «традиционную» систему деятельности, а преобразовывает ее, сохраняя все необходимое для реализации новых образовательных целей. Вместо простой передачи знаний, умений и навыков от учителя к ученику приоритетной целью школьного образования становится развитие способности ученика самостоятельно ставить учебные цели, проектировать пути их реализации, контролировать и оценивать свои достижения, иначе говоря, умение учиться. Для моделирования учебных занятий в рамках ФГОС необходимо знать принципы построения урока, его структуру и особенности некоторых его этапов. Итак, особенности некоторых этапов.

1. Организационный момент.

Цель: включение учащихся в деятельность на личностно – значимом уровне. «Хочу, потому что могу». У учащихся должна возникнуть положительная эмоциональная направленность. С малой удачи начинается большой успех.

2. Актуализация знаний.

Цель: повторение изученного материала, необходимого для «открытия нового знания», и выявление затруднений в индивидуальной деятельности каждого учащегося. Вначале актуализируются знания, необходимые для работы над новым материалом. Одновременно идёт эффективная работа над развитием внимания, памяти, речи, мыслительных операций. Затем создаётся проблемная ситуация, чётко проговаривается цель урока.

3. Постановка учебной задачи.

Цель: обсуждение затруднений, проговаривание цели урока в виде вопроса, на который предстоит ответить.

4. «Открытие нового знания»

Цель: решение устных задач и обсуждение проекта их решения. Новое знание дети получают в результате самостоятельного исследования, проводимого под руководством учителя. Новые правила, они пытаются выразить своими словами.

5. Первичное закрепление.

Цель: проговаривание нового знания, запись в виде опорного сигнала.

6. Самостоятельная работа с самопроверкой по эталону.

Цель: каждый для себя должен сделать вывод о том, что он уже умеет, запомнил ли новые правила. Здесь необходимо создать для каждого ребёнка ситуацию успеха.

7. Включение нового знания в систему знаний и повторение.

Сначала предложить учащимся из набора заданий выбрать только те, которые содержат новый алгоритм или новое понятие. При повторении ранее изученного материала используются игровые элементы – сказочные персонажи, соревнования. Это создаёт положительный эмоциональный фон, способствует развитию у детей интереса к урокам.

8. Рефлексия деятельности.

Цель: осознание учащимися своей учебной деятельности, самооценка результатов деятельности своей и всего класса.

В качестве примера приведем фрагменты нескольких уроков. Изучение теории – один из наиболее трудных вопросов преподавания математики.

Теорема Виета. (8 класс) В начале урока учащимся предлагается рассмотреть приведенное квадратное уравнение x 2 + px + q = 0 и найти сумму и произведение его корней. В результате выполнения нескольких уравнений приходим к формулировке данной теоремы.

При изучении темы «Взаимно обратные числа» (6 класс) ученики находят произведение взаимно обратных чисел. В ходе выполнения нескольких заданий ученики сами делают вывод и формулируют определение данных чисел.

На уроке геометрии(7 класс) ученики рассматривают несколько видов треугольников, при помощи транспортира измеряют углы и в результате работы делают вывод о сумме углов треугольника

В результате выполнения подобных заданий у учащихся возникает чувство уверенности в собственных силах, появляется интерес к самостоятельной теоретической работе.

В известной японской пословице сказано: «Налови мне рыбы – и я буду сыт сегодня; научи меня ловить рыбу – так я буду сыт до конца жизни».

Стандарт ориентирован также на становление личностных характеристик выпускника: любящий свой край и свое Отечество, уважающий свой народ, его культуру, духовные традиции.

На этапе первичного закрепления с проговариванием во внешней речи учащиеся составляют опорные схемы, алгоритмы решения. При изучении темы «Нахождение наибольшего и наименьшего значения функции при помощи производной» в 11 классе составляем алгоритм:

1. Найти производную.

3. Выбрать те из них, которые принадлежат заданному промежутку.

4. Вычислить значения функции в этих точках и на концах отрезка.

5. Из полученных чисел выбрать наибольшее и наименьшее значение. В соответствии с требованиями ФГОС учитель систематически обучает детей осуществлять рефлексивное действие.

Например, дети самостоятельно решают логарифмическое неравенство, получают различные ответы. В свободном режиме идет обсуждение, кто прав, делаем вывод, что при решении логарифмических неравенств важным шагом является определение вида монотонности функции.

Урок, основанный на принципах системно – деятельностного подхода прививает такие навыки учащимися, которые дают возможность использовать их при последующем обучении и в дальнейшей жизни. Последовательная реализация системно – деятельностного подхода повышает эффективность образования, существенно усиливает мотивацию и интерес к учению, обеспечивает условия для общекультурного и личностного развития на основе формирования УУД, обеспечивающих не только успешное усвоение знаний, но и формирование компетентностей в любой предметной области познания.

Асмолов А.Г. Системно – деятельностный подход к разработке стандартов нового поколения // Педагогика №4, 2011.

Федеральный государственный образовательный стандарт.

Источник

Системный подход на уроках математики

Ищем педагогов в команду «Инфоурок»

на уроках математики

ФГОС ООО представляет собой совокупность требований, обязательных при реализации основной образовательной программы основного общего образования образовательными учреждениями, имеющими государственную аккредитацию.

Стандарт выдвигает три группы требований: требования к результатам освоения основной образовательной программы; требования к структуре основной образовательной программы; требования к условиям реализации основной образовательной программы.

Особенностью стандарта нового поколения является соединение системного и деятельностного подхода в обучении как методологии ФГОС, где соотношение теоретической и практической долей содержания новых стандартов будет в пользу практической составляющей, без ущерба для фундаментального знания.

Учителя сегодня волнуют вопросы:

— Как организовать современный урок с точки зрения системно-деятельностного подхода?

— Как сформулировать цели урока с позиций планируемых результатов образования?

— Какой учебный материал отобрать и как его структурировать?

— Какие методы и средства обучения выбрать?

— Как обеспечить рациональное сочетание форм и методов обучения и др.

Одним словом встает вопрос как обучать?

Прежде всего, я хотела бы остановиться на сущности системно-деятельностного подхода в обучении.

Основная идея этого подхода заключаются в том, что главный результат образования – это не отдельные знания, умения и навыки, а способность и готовность человека к эффективной и продуктивной деятельности в различных социально-значимых ситуациях.

Очевидно, что существующая дидактическая система, не исчерпав своей значимости, вместе с тем не позволяет эффективно осуществлять развивающую функцию образования. В связи с этим сформировались новые дидактические принципы, которые решают современные образовательные задачи с учетом запросов будущего. Основные из них:

1. Принцип деятельности.

2. Принцип целостного представления о мире.

3. Принцип непрерывности.

4. Принцип минимакса.

5. Принцип психологической комфортности.

6. Принцип вариативности.

7. Принцип творчества (креативности).

Встает вопрос с помощью чего учить?

• открытия нового знания;

• повторения системы знаний;

• Самоопределение к деятельности (организационный момент).

• Актуализация знаний и затруднение в деятельности.

• Выявление места и причины затруднения.

• Построение проекта выхода из затруднения.

• Реализация построенного проекта.

• Первичное закрепление во внешней речи.

• Самостоятельная работа с самопроверкой в классе.

• Включение в систему знаний и повторение

• Рефлексия учебной деятельности (итог).

В преподавании математики в российских школах в рамках традиционной программы сохранена ориентация на фундаментальный характер образования, на освоение школьниками основополагающих понятий и идей, таких, как число, буквенное исчисление, функция, геометрическая фигура, вероятность, дедукция, математическое моделирование. Эта программа включает материал, создающий основу математической грамотности, необходимой как тем, кто станет учеными, инженерами, изобретателями, экономистами и будет решать принципиальные задачи, связанные с математикой, так и тем, для кого математика не станет сферой непосредственной профессиональной деятельности.

Вместе с тем подходы к формированию содержания школьного математического образования претерпели существенные изменения, отвечающие требованиям сегодняшнего дня, а система математического образования должна стать более динамичной за счет вариативной составляющей на всем протяжении второй ступени общего образования.

2. Урок математики с учетом новых стандартов.

Как же построить урок математики, чтобы реализовать требования новых Стандартов? Для построения такого урока важно понять, какими должны быть критерии результативности урока:

1. Цели урока задаются с тенденцией передачи функции от учителя к ученику.

2. Учитель систематически обучает детей осуществлять рефлексивное действие (оценивать свою готовность, обнаруживать незнание, находить причины затруднений и т.п.).

3. Используются разнообразные формы, методы и приемы обучения, повышающие степень активности учащихся в учебном процессе.

4. Учитель владеет технологией диалога, обучает учащихся ставить и адресовать вопросы.

5. Учитель эффективно (адекватно цели урока) сочетает репродуктивную и проблемную формы обучения, учит детей работать по правилу и творчески.

6. На уроке задаются задачи и четкие критерии самоконтроля и самооценки (происходит специальное формирование контрольно-оценочной деятельности у обучающихся).

7. Учитель добивается осмысления учебного материала всеми учащимися, используя для этого специальные приемы.

8. Учитель стремиться оценивать реальное продвижение каждого ученика, поощряет и поддерживает минимальные успехи.

9. Учитель специально планирует коммуникативные задачи урока.

10. Учитель принимает и поощряет, выражаемую учеником, собственную позицию, иное мнение, обучает корректным формам их выражения.

11. Стиль, тон отношений, задаваемый на уроке, создают атмосферу сотрудничества, сотворчества, психологического комфорта.

12. На уроке осуществляется глубокое личностное воздействие «учитель – ученик» (через отношения, совместную деятельность и т.д.)

Для того, чтобы знания учащихся были результатом их собственных поисков, необходимо организовать эти поиски, управлять учащимися, развивать их познавательную деятельность.

Позиция учителя: к классу не с ответом (готовые знания, умения, навыки), а с вопросом.

Позиция ученика: за познание мира, (в специально организованных для этого условиях).

Учебная задача – задача, решая которую ребенок выполняет цели учителя. Она может совпадать с целью урока или не совпадать.

Учебная деятельность – управляемый учебный процесс.

Учебное действие – действие по созданию образа. Образ – слово, рисунок, схема, план.

Оценочное действие – я умею! У меня получится! Эмоционально – ценностная оценка – Я считаю так то…. (формирование мировоззрения).

Вместо простой передачи ЗУН от учителя к ученику приоритетной целью школьного образования становится развитие способности ученика самостоятельно ставить учебные цели, проектировать пути их реализации, контролировать и оценивать свои достижения, иначе говоря, умение учиться.

1 этап: закрепляет умение анализировать, обобщать, формулировать умозаключения.

2 этап: организует взаимодействие учащихся, организует решение, сбор и обсуждение результатов в парах.

2 этап: применение полученных ЗУН в измененных условиях (работа в паре), осуществление взаимоконтроля.

3 этап: организует поиск рационального способа решения учебной задачи, организовать самостоятельное выполнение учащимися заданий, организовать самопроверку уч-ся своих решений.

3 этап: закрепляет умение работать самостоятельно, контроль за правильностью выполнения своих действий.

4 этап: контроль и коррекция знаний, предоставление возможности выявления причин ошибок и их исправления.

4 этап: применение полученных ЗУН на практике,

5 этап: контроль за результатом учебной деятельности, оценка знаний.

5 этап: самостоятельное подведение итогов урока, самоанализ и самооценка.

3. Примерная типология уроков в дидактической системе деятельностного метода

Основная цель системно – деятельностного подхода в обучении: научить не знаниям, а работе.

Для этого учитель ставит ряд вопросов:

— какой учебный материал отобрать и как подвергнуть его дидактической обработке;

— какие методы и средства обучения выбрать;

— как организовать собственную деятельность и деятельность учащихся;

— как сделать, чтобы взаимодействие всех этих компонентов привело к определенной системе знаний и ценностных ориентаций.

Структура урока с позиций системно – деятельностного подхода состоит в следующем:

— учитель создает проблемную ситуацию;

— ученик принимает проблемную ситуацию;

— вместе выявляют проблему;

— учитель управляет поисковой деятельностью;

— ученик осуществляет самостоятельный поиск;

Проблемная ситуация ( учитель обращается к учащимся). Прочитайте в учебнике определение прямоугольника и установите, можно ли его видоизменить таким образом: «Параллелограмм, у которого есть прямой угол, называется прямоугольником».

Такое задание учащиеся не могут выполнить без вдумчивого чтения, без анализа сопоставления обеих формулировок. В таком случае учащиеся лучше запомнят определение, чем при его чтении без конкретного задания.

Пример 2. Урок по теме «Сумма углов треугольника» – геометрия
7 класс УМК Л.С.Атанасяна.

Учитель : – Вы можете начертить такой треугольник? (Побуждение к осознанию противоречия.)

Ученик : – Нет, не получается! (осознание затруднения.)

Учитель: – Какой же вопрос возникает? (Побуждение к формулировке проблемы.)

Ученик: – Почему не строится треугольник? (Проблема как вопрос, не совпадающий с темой урока.)

Диалог, побуждающий к выдвижению и проверке гипотезы.

– Измерьте его углы транспортиром.

– Найдите сумму углов.

– Какие результаты у вас получились?

– К какому круглому числу приближаются ваши результаты?

– Что же можно предположить о сумме углов треугольника?

– Сверим вывод с учебником.

– А почему у вас получились неточные результаты?

Пример 3 : Исследовательская работа на уроке по теме «Признаки делимости на 3 и 9» – математика 6 УМК Н.Я. Виленкина.

1. Представьте число 8535 в виде суммы разрядных слагаемых.

2. Каждое круглое число представьте в виде суммы двух слагаемых, одно из которых равно 1 (например: 100 = 99 + 1).

3. Раскройте скобки, применив распределительный закон ( a·(b + c) = a·c + b·c ).

4. Пользуясь законами сложения, упростите полученное выражение, заключив в скобки слагаемые, не входящие в произведения. Выполните сложение в скобках.

5. Будет ли данное выражение делится на 3, согласно свойствам делимости суммы и произведения?

6. Подумайте, от делимости на 3 какого слагаемого будет зависеть делимость всего выражения?

7. Как получилось это слагаемое? Что это за цифры?

8. Попробуйте сделать вывод о том, когда число делится на 3? Сформулируйте правило.

9. Проверьте свой вывод по учебнику.

Диалог, побуждающий к выдвижению и проверке гипотезы

Пример 5: Урок подготовки к ГИА. Повторение темы «Рациональные уравнения».

Целевое назначение: Закрепление предметных умений, формирование УУД.

Результативность обучения: Безошибочное выполнение заданий по данной теме, решение задач отдельными учениками, коллективом класса, безошибочные устные ответы, умение находить и исправлять ошибки, оказывать взаимопомощь.

Учащимся предлагается презентация на тему «Рациональные уравнения», в которой они получает возможность, как самостоятельно проверить свои знания, так и группами, а также коллективом класса.

Преподавание – не наука, а искусство. Если класс заметит, что вам скучно, то сразу станет скучно и всем. Поэтому учитель находится постоянно в творческом поиске.

Школьный урок: обычный урок, на котором решают задачи, доказывают теоремы, делают опыты и это является педагогическим творчеством. Урок, на котором сливается труд учителя с трудом учащихся, в цепком единстве сотрудничают мысль, чувство, воля, на котором радуются, огорчаются, устают, но ощущают результат своих усилий, – да, такой урок – подлинное творчество.

Одним из возможных направлений повышения качества обучения учащихся основной школы на уроках математики, в рамках внедрения ФГОС, является системно-деятельностный подход. Организация процесса обучения через деятельность обучающихся, может служить основой для формирования у них творческого мышления.

Подтверждено, что повышению качества обучения математики способствует такое обучение, при котором на первый план выступает не сам процесс обучения, а овладение учащимися общей структурой деятельности, а именно теоретическим способом действия, состоящим из трех взаимосвязанных компонентов: анализа, планирования (внутреннего плана действия) и рефлексии.

Источник

Системно-деятельностный подход в обучении математике.

Ищем педагогов в команду «Инфоурок»

Сахаров Алексей Павлович, учитель математики,

частное общеобразовательное учреждение «Школа – интернат №3

среднего общего образования ОАО «РЖД» г. Ртищево Саратовской области

Какие качества необходимы современному выпускнику?

Разные люди отвечают на этот вопрос по-разному.

· Кто-то говорит о глубоких и прочных знаниях,

Однако все и всегда сходятся в том, что школа должна помочь каждому ребенку стать счастливым: найти свое место в жизни, приобрести верных друзей, построить семью, самореализоваться в выбранной профессии.

Сущность системно деятельностного подхода в обучении

Основная идея этого подхода заключаются в том, что главный результат образования – это не отдельные знания, умения и навыки, а способность и готовность человека к эффективной и продуктивной деятельности в различных социально-значимых ситуациях.

Основные задачи образования сегодня – не просто вооружить ученика фиксированным набором знаний, а сформировать у него умение и желание учиться всю жизнь, работать в команде, способность к самоизменению и саморазвитию на основе рефлексивной самоорганизации.

Основная идея системно-деятельностного подхода состоит в том, что новые знания не даются в готовом виде. Дети «открывают» их сами в процессе самостоятельной исследовательской деятельности. Задача учителя при введении нового материала заключается не в том, чтобы все наглядно и доступно объяснить, показать и рассказать. Учитель должен организовать исследовательскую работу детей, чтобы они сами додумались до решения проблемы урока и сами объяснили, как надо действовать в новых условиях.

Функция учителя заключается не в обучении, а в сопровождении учебного процесса: подготовка дидактического материала для работы, организация различных форм сотрудничества, активное участие в обсуждении результатов деятельности учащихся через наводящие вопросы, создание условий для самоконтроля и самооценки. Результаты занятий допускают неокончательное решение главной проблемы, что побуждает детей к поиску возможностей других решений, к развитию ситуации на новом уровне.

Следует подчеркнуть, что ориентация на развивающее обучение вовсе не означает отказ от формирования знаний, умений и навыков, без которых невозможно самоопределение личности, ее самореализация.

Именно поэтому дидактическая система Я.А. Коменского, впитавшая в себя вековые традиции системы передачи ученикам знаний о мире, и сегодня составляет методологическую основу так называемой “традиционной” школы:

Дидактические принципы — наглядность, доступность, научность, систематичность, сознательность усвоения учебного материала.

Метод обучения — объяснительно-иллюстративный.

Форма обучения — классно-урочная.

Однако для всех очевидно, что существующая дидактическая система, не исчерпав своей значимости, вместе с тем не позволяет эффективно осуществлять развивающую функцию образования. В последние годы в работах Л.В. Занкова, В.В. Давыдова, П.Я. Гальперина и многих других педагогов-ученых и практиков сформировались новые дидактические требования, которые решают современные образовательные задачи с учетом запросов будущего. Основные из них:

1. Принцип деятельности

Основной вывод психолого-педагогических исследований последних лет заключается в том, что формирование личности ученика и продвижение его в развитии осуществляется не тогда, когда он воспринимает готовое знание, а в процессе его собственной деятельности, направленной на “открытие” им нового знания.

Таким образом, основным механизмом реализации целей и задач развивающего обучения является включение ребенка в учебно-познавательную деятельность. В этом и заключается принцип деятельности. Обучение, реализующее принцип деятельности, называют деятельностным подходом.

2. Принцип целостного представления о мире

Еще Я.А. Коменский отмечал, что явления нужно изучать во взаимной связи, а не разрозненно (не как “кучу дров”). В наше время этот тезис приобретает еще большую значимость. Он означает, что у ребенка должно быть сформировано обобщенное, целостное представление о мире (природе — обществе — самом себе), о роли и месте каждой науки в системе наук. Естественно, что при этом знания, формируемые у учащихся, должны отражать язык и структуру научного знания.

Принцип единой картины мира в деятельностном подходе тесно связан с дидактическим принципом научности в традиционной системе, но гораздо глубже его. Здесь речь идет не просто о формировании научной картины мира, но и о личностном отношении учащихся к полученным знаниям, а также об умении применять их в своей практической деятельности. Например, если речь идет об экологических знаниях, то учащийся должен не просто знать, что нехорошо срывать те или иные цветы, оставлять после себя мусор в лесу и т.д., а принять свое собственное решение так не делать.

3. Принцип непрерывности

Идея преемственности также не является новой для педагогики, однако до сих пор она чаще всего ограничивается так называемой “пропедевтикой”, а не решается системно. Особую актуальность приобрела проблема преемственности в связи с появлением вариативных программ.

4. Принцип минимакса

Все дети разные, и каждый из них развивается своим темпом. Вместе с тем обучение в массовой школе сориентировано на некий средний уровень, который слишком высок для слабых детей и явно недостаточен для более сильных. Это тормозит развитие как сильных детей, так и слабых.

Чтобы учесть индивидуальные особенности учащихся, часто выделяют 2, 4 и т.д. уровня. Однако реальных уровней в классе ровно столько, сколько детей! Возможно ли их точно определить? Не говоря уже о том, что практически трудно учесть даже четыре — ведь для учителя это означает 20 подготовок в день!

Выход прост: выделить всего лишь два уровня — максимум, определяемый зоной ближайшего развития детей, и необходимый минимум. Принцип минимакса заключается в следующем: школа должна предложить ученику содержание образования по максимальному уровню, а ученик обязан усвоить это содержание по минимальному уровню

Система минимакса является, видимо, оптимальной для реализации индивидуального подхода, так как это саморегулирующаяся система. Слабый ученик ограничится минимумом, а сильный — возьмет все и пойдет дальше. Все остальные разместятся в промежутке между этими двумя уровнями в соответствии со своими способностями и возможностями — они сами выберут свой уровень по своему возможному максимуму.

Работа ведется на высоком уровне трудности, но оценивается лишь обязательный результат, и успех. Это позволит сформировать у учащихся установку на достижение успеха, а не на уход от “двойки”, что гораздо важнее для развития мотивационной сферы.

5. Принцип психологической комфортности

Принцип психологической комфортности предполагает снятие по возможности всех стрессообразующих факторов учебного процесса, создание в школе и на уроке такой атмосферы, которая расковывает детей и в которой они чувствуют себя “как дома”.

Никакие успехи в учебе не принесут пользы, если они “замешаны” на страхе перед взрослыми, подавлении личности ребенка.

Однако психологическая комфортность необходима не только для усвоения знаний — от этого зависит физиологическое состояние детей. Адаптация к конкретным условиям, создание атмосферы доброжелательности позволит снять напряженность и неврозы, разрушающие здоровье детей.

6. Принцип вариативности

Современная жизнь требует от человека умения осуществлять выбор — от выбора товаров и услуг до выбора друзей и выбора жизненного пути. Принцип вариативности предполагает развитие у учащихся вариативного мышления, то есть понимания возможности различных вариантов решения задачи и умения осуществлять систематический перебор вариантов.

Обучение, в котором реализуется принцип вариативности, снимает у учащихся страх перед ошибкой, учит воспринимать неудачу не как трагедию, а как сигнал для ее исправления. Такой подход к решению проблем, особенно в трудных ситуациях, необходим и в жизни: в случае неудачи не впадать в уныние, а искать и находить конструктивный путь.

С другой стороны, принцип вариативности обеспечивает право учителя на самостоятельность в выборе учебной литературы, форм и методов работы, степень их адаптации в учебном процессе. Однако это право рождает и большую ответственность учителя за конечный результат своей деятельности — качество обучения.

7. Принцип творчества (креативности)

Принцип творчества предполагает максимальную ориентацию на творческое начало в учебной деятельности школьников, приобретение ими собственного опыта творческой деятельности.

Речь здесь идет не о простом “придумывании” заданий по аналогии, хотя и такие задания следует всячески приветствовать. Здесь прежде всего имеется в виду формирование у учащихся способности самостоятельно находить решение не встречавшихся раньше задач, самостоятельное “открытие” ими новых способов действия.

Умение создавать новое, находить нестандартное решение жизненных проблем стало сегодня неотъемлемой составной частью реального жизненного успеха любого человека. Поэтому развитие творческих способностей приобретает в наши дни общеобразовательное значение.

Изложенные выше принципы обучения, развивая идеи традиционной дидактики, интегрируют полезные и не конфликтующие между собой идеи из новых концепций образования с позиций преемственности научных взглядов. Они не отвергают, а продолжают и развивают традиционную дидактику в направлении решения современных образовательных задач.

Примерная типология уроков в дидактической системе деятельностного метода

Для этого учитель ставит ряд вопросов:

— какой учебный материал отобрать и как подвергнуть его дидактической обработке;

-какие методы и средства обучения выбрать;

-как организовать собственную деятельность и деятельность учащихся;

-как сделать, чтобы взаимодействие всех этих компонентов привело к определенной системе знаний и ценностных ориентаций.

Структура урока с позиций системно-деятельностного подхода состоит в следующем:

— учитель создает проблемную ситуацию;

— ученик принимает проблемную ситуацию;

— вместе выявляют проблему;

— учитель управляет поисковой деятельностью;

— ученик осуществляет самостоятельный поиск;

Можно предложить учащимся прочитать в учебнике, вдумываясь в определение, что такое прямоугольный параллелепипед.

Призывы «вдумайтесь!», «запомните!» для большинства бесполезны.

Чтобы в действительности побуждать учащихся к вдумчивому чтению, лучше дать конкретное задание, в котором указать, что и как должны сделать учащиеся.

Создадим проблемную ситуацию. Назовите предметы, изображенные на слайде. В чем их сходство?

Ясно, что такое задание учащиеся не могут выполнить без вдумчивого анализа ситуации.

В таком случае учащиеся лучше запомнят определение, чем при его чтении без конкретного задания.

Как показали исследования немецких ученых, человек запоминает только 10% того, что он читает, 20% того, что слышит, 30% того, что видит, 50-70% запоминается при участии в групповых дискуссиях, 80% при самостоятельном обнаружении и формулировании проблем. И лишь когда обучающийся непосредственно участвует в реальной деятельности, в самостоятельной постановке проблем, выработке и принятии решения, формулировке выводов и прогнозов, он запоминает и усваивает материал на 90%. Близкие к приведенным данные были получены также американскими и российскими исследователями.

Факторы, влияющие на качество преподавания.

Преподавание – не наука, а искусство. Если класс заметит, что вам скучно, то сразу станет скучно и всем. Поэтому учитель находится постоянно в творческом поиске. Итак, факторы, влияющие на качество преподавания:

Обстановка в классной комнате – освещенность, чистота, свежий воздух, наличие удобной для учеников мебели. Важно оснащение кабинета и его постоянное обновление.

Очень важно установить деловые взаимоуважительные отношения между учителем и учащимися данного класса и их родителей. “В центр внимания нужно поставить индивидуальность каждого ученика. Педагоги должны воспринимать учеников именно такими, какие они есть. Каждый ученик – хороший. Работать нужно с учеником и оценивать его не в сравнении с другими, а в сравнении с ним самим, с тем, каким он был вчера, неделю, месяц назад. А если при этом прогрессирует, то его необходимо поощрять”. (Р.Г. Хазанкин).

Важны межпредметные связи. Уроки истории математики, русский язык на уроках математики, география и математика и т.д. прививают интерес к предмету.

Работая по данной теме, учителя сталкиваются с проблемой отсутствия разработанных УМК, ориентированных на деятельностный подход. Поэтому при подготовке к занятиям приходится ориентироваться на несколько источников, включая материалы КИМов ГИА, ЕГЭ, международного конкурса «Кенгуру».

Чем больше учащиеся выполняют задач и упражнений, тем лучше и глубже усваивают программу по математике. А в достижении этой цели очень хорошо помогают устные задания, устный счет. Подобные занятия развивают активность мышления и сообразительность, увеличивают скорость вычислений. Польза устных вычислений огромна. Применяя законы арифметических действий к устным вычислениям, ученики не только повторяют их, закрепляют, но, что самое главное, усваивают их не механически, а сознательно. При устных вычислениях развиваются такие ценные качества человека, как внимание, сосредоточенность, выдержка, смекалка, самостоятельность. Устный счет содействует тренировке памяти, открывает широкие возможности для развития творческой инициативы учащихся.

Из личного опыта (примеры использования деятельностного метода на уроках математики).

Я считаю, что только самостоятельная творческая деятельность учащихся, предваряющая объяснение учителя, успешно готовит их к активному восприятию новых знаний, позволяет увидеть связь между пройденным материалом и вновь изученным. Ученики становятся активными «творцами» нового, а не пассивными «запоминателями».

Навыки самоконтроля можно формировать на всех этапах обучения. Так при работе с определениями считаю целесообразным предоставить учащимся возможность самим дать нужное определение. (Моя роль в этом случае заключается в умелом приведении контрпримеров для выявления ошибок в ответах учащихся). Стараюсь приучать учащихся ставить самим себе вопросы типа: «Что получится с определением, если из него выкинуть слова…? Почему оно тогда будет неправильным?

Продуктивность самостоятельной работы зависит во многом от общих умений познавательной деятельности, поэтому ориентирую учащихся на развитие умений обобщать, классифицировать, систематизировать и строить различные схемы изучаемого материала. При этом подчёркиваю, что, например, построение таблиц, кластеров, схем, графиков в ходе изучения материала позволяет увеличить объём запоминаемой информации (по сравнению с запоминанием на слух на 15-20%), что владение этими умениями позволяет в дальнейшем легче ориентироваться в сходной информации, легче её усваивать и понимать.

Организация процесса обучения через деятельность обучающихся может служить основой для формирования у них творческого мышления.

Повышению качества обучения математики способствует такое обучение, при котором на первый план выступает не сам процесс обучения, а овладение учащимися общей структурой деятельности: теоретическим способом действия, состоящим из трех взаимосвязанных компонентов: анализа, планирования (внутреннего плана действия) и рефлексии.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *