что является предметом методики обучения математике
Предмет методики преподавания математики
1.2 Предмет методики преподавания математики
Существуют разные точки зрения на содержание понятия «методика». Одни, признавая методику наукой педагогической, рассматривали ее как частную дидактику с общими для всех предметов принципами обучения. Другие считали методику специальной педагогической наукой, решающей все задачи обучения и развития личности через содержание предмета. Приведем несколько примеров определений.
Методика обучения математике – это педагогическая наука о задачах, содержании и методах обучения математике. Она изучает и исследует процесс обучения математике в целях повышения его эффективности и качества. Методика обучения математике рассматривает вопрос о том, как надо преподавать математику.
Методика преподавания математики в средней школе возникла с целью поиска педагогически целесообразных путей и способов изложения учебного материала. Методика преподавания математики начала разрабатываться чешским учёным Я.А. Коменским. Методика обучения математике впервые выделилась как самостоятельная дисциплина в книге швейцарского учёного И.Г. Песталоцци «Наглядное учение о числе» (1803, русский перевод 1806). Первым пособием по методике математики в России стала книга Ф.И. Буссе «Руководство к преподаванию арифметики для учителей» (1831). Создателем русской методики арифметики для народной школы считается П.С. Гурьев, который критерием правильности решения методических проблем признавал опыт и практику.
Цель методики обучения математике заключается в исследовании основных компонентов системы обучения математике в школе и связей между ними. Под основными компонентами понимаются: цели, содержание, методы, формы и средства обучения математике.
Предмет методики обучения математике отличается исключительной сложностью. Предметом методики обучения математике является обучение математике, состоящее из целей и содержания математического образования, методов, средств, форм обучения математике.
На функционирование системы обучения математике оказывает влияние ряд факторов: общие цели образования, гуманизация и гуманитаризация образования, развитие математики как науки, прикладная и практическая направленность математики, новые образовательные идеи и технологии, результаты исследований в психологии, дидактике, логике и т.д. Совокупность этих факторов образует внешнюю среду, которая оказывает непосредственное влияние на систему обучения математике. Многие компоненты внешней среды воздействуют на нее через цели обучения математике.
Методика преподавания математики претерпевает в своем развитии большие трудности, прежде всего, из-за сложностей преодоления разрыва между школьной математикой и математической наукой, а также из-за того, что она является пограничным разделом педагогики на стыке философии, математики, логики, психологии, биологии, кибернетики и, кроме того, искусства.
В методике преподавания математики, в практике обучения предмету находят свое отражение особенности многовековой истории развития математики от глубокой древности до наших дней. Для глубокого понимания методических закономерностей студентам необходимо знать историю развития методики преподавания математики.
1.3 Основные задачи методики преподавания математики
Определить конкретные цели изучения математики по классам, темам урокам.
Отбирать содержание учебного предмета в соответствии с целями и познавательными возможностями учащихся.
Разработать наиболее рациональные методы и организационные формы обучения, направленные на достижение поставленных целей.
Рассмотреть необходимые средства обучения и разработать рекомендации по их применению в практике работы учителя.
Методика преподавания математики призвана дать ответы на следующие три вопроса: Зачем надо учить математике? Что надо изучать? Как надо обучать математике?
Предусмотренное программой содержание школьного математического образования, несмотря на происходящие в нем изменения, в течение достаточно длительного времени сохраняет свое основное ядро. Такая устойчивость основного содержания программы объясняется тем, что математика, приобретая в своем развитии много нового, сохраняет и все ранее накопленные научные знания, не отбрасывая их как устаревшие и ставшие ненужными. Каждый из вошедших в это “ядро” разделов имеет свою историю развития как предмет изучения в средней школе. Вопросы их изучения подробно рассматриваются в специальной методике преподавания математики[3].
Выделенное ядро школьного курса математики составляет основу его базисной программы, которая является исходным документом для разработки тематических программ. В тематической программе для средней школы, кроме распределения учебного материала по классам, излагаются требования к знаниям, умениям и навыкам учащихся, раскрываются межпредметные связи, даются примерные нормы оценок.
За рубежом, в школах развитых стран, значительное место в программах по математике отводится теории вероятностей и статистике. В программах школ Японии раздел «Статистика» является основным уже в 1-м классе начальной школы. Элементы теории вероятностей на строгой математической основе вводятся в старших классах школ Бельгии и Франции. Геометрия как самостоятельный учебный предмет во многих школах не изучается, отдельные её вопросы включены в курс арифметики, алгебры и начал математического анализа.
В большинстве развитых стран математическое образование на старшей ступени общеобразовательной подготовки дифференцировано в соответствии с определенным профилем специализации. На всех ступенях обучения большую роль играет развитие функциональных представлений, овладение математическими методами, формирование исследовательских навыков.
В качестве недостатков традиционного обучения можно выделить:
преобладание словесных методов изложения, способствующих распылению внимания и невозможности его акцентирования на сущности учебного материала;
средний темп изучения математического материала;
большой объем материала, требующего запоминания;
недостаток дифференцированных заданий по математике и др.
Недостатки традиционного обучения можно устранить путем усовершенствования процесса ее преподавания.
Любой метод обучения предполагает цель, систему действий, средства обучения и намеченный результат. Объектом и субъектом метода обучения является ученик.
Очень редко какой-либо один метод обучения используется в чистом виде. Обычно преподаватель сочетает различные методы обучения. Методы в чистом виде применяют лишь в специально спланированных учебных или исследовательских целях.
Классификация методов обучения проводится по различным основаниям:
По характеру познавательной деятельности (М.Н. Скаткин, М.И. Махмутов, И.Я. Лернер):
• объяснительно-иллюстративные (рассказ, лекция, беседа, демонстрация и т.д.);
• репродуктивные (решение задач, повторение опытов и т.д.);
• проблемные (проблемные задачи, познавательные задачи и т.д.);
• частично-поисковые – эвристические;
• исследовательские.
По компонентам деятельности (Ю.К. Бабанский):
• организационно-действенному – методы организации и осуществления учебно-познавательной деятельности;
• стимулирующему – методы стимулирования и мотивации учебно-познавательной деятельности;
• контрольно-оценочному – методы контроля и самоконтроля эффективности учебно-познавательной деятельности.
По дидактическим целям (методы изучения новых знаний, методы закрепления знаний, методы контроля).
По формам организации учебной деятельности.
По уровням самостоятельной активности учащихся.
По источникам передачи знаний ( А.А, Вагин, П.В. Гора):
• словесные: рассказ, лекция, беседа, инструктаж, дискуссия;
• наглядные: демонстрация, иллюстрация, схема, показ материала, график;
• практические: упражнение, лабораторная работа, практикум.
По учету структуры личности (сознания, поведение, чувства):
• сознание (рассказ, беседа, инструктаж, иллюстрирование и др.);
• поведение (упражнение, тренировка и т.д.);
• чувства – стимулирование (одобрение, похвала, порицание, контроль и т.д.).
Новое содержание образования порождает новые методы в обучении математике. Необходим комплексный подход в применении методов обучения, их гибкость и динамичность.
Основными методами математического исследования являются: наблюдение и опыт; сравнение; анализ и синтез; обобщение и специализация; абстрагирование и конкретизация.
Современные методы обучения математике: проблемный (перспективный) метод; лабораторный метод; метод программированного обучения; эвристический метод; метод построения математических моделей, аксиоматический метод и др.
Информационно-развивающие методы обучения разделяются на два класса:
а) передача информации в готовом виде (лекция, объяснение, демонстрация учебных кинофильмов и видеофильмов, слушание магнитозаписей и др.);
К проблемно-поисковым методам относятся: проблемное изложение учебного материала (эвристическая беседа), учебная дискуссия, лабораторная поисковая работа (предшествующая изучению материала), организация коллективной мыслительной деятельности (КМД) в работе малыми группами, организационно-деятельностная игра, исследовательская работа.
Репродуктивные методы: пересказ учебного материала, выполнение упражнения по образцу, лабораторная работа по инструкции, упражнения на тренажерах.
Творчески-репродуктивные методы: сочинение, вариативные упражнения, анализ производственных ситуаций, деловые игры и другие виды имитации профессиональной деятельности.
Методы обучения постоянно дополняются современными методами обучения, главным образом ориентированными на обучение не готовым знаниям, а деятельности по самостоятельному приобретению новых знаний, т.е. познавательной деятельностью[4].
Глава 2 Цели и содержание обучения математике
Предмет, цели и задачи методики преподавания математики и ее связи с другими науками.
Предмет, цели и задачи методики преподавания математики и ее связи с другими науками.
Методика преподавания математики — наука о математике как учебном предмете и закономерностях процесса обучения математике учащихся различных возрастных групп и способностей; методика обучения математике — это педагогическая наука о задачах, содержании и методах обучения математике. Цели математике: общеобразовательные (овладение учащимися определённого объёма математических ЗУНов в соответствии с программой), воспитательные (формирование мировоззрения, важнейших моральных качеств, готовности к труду), развивающие (развитие логических структур и математического стиля мышления), практические (формирование умения применять математические знания в конкретных ситуациях, при решении практических задач).
Основными задачами методики преподавания математики являются: определение конкретных целей изучения математики по классам, темам, урокам; отбор содержания учебного предмета в соответствии с целями и познавательными возможностями учащихся; разработка наиболее рациональных методов и организационных форм обучения, направленных на достижение поставленных целей; выбор необходимых средств обучения и разработка методики их применения в практике работы учителя математики.
Предметом методики обучения математике являются цели и содержание математического образования, методы, средства и формы обучения математике.
Математика как учебный предмет в школе.
В школьный курс математики должна быть отобрана та часть математических знаний (обязательная), которая даст общее представление о науке, поможет овладеть математическими методами, и будет способствовать необходимому развитию математического мышления у школьников.
Содержание учебного предмета математики меняется со временем в связи с расширением целей образования, появлением новых требований к школьной подготовке, изменением стандартов образования.
Математика как учебный предмет в школе представляет собой элементы арифметики, алгебры, начал математического анализа, евклидовой геометрии плоскости и пространства, аналитической геометрии, тригонометрии.
Обучение учащихся математике направлено: на овладение ими системой математических знаний, умений и навыков, необходимых для дальнейшего изучения математики и смежных учебных предметов решения практических задач; на развитие логического мышления пространственного воображения, устной и письменной математической речи; на формирование навыков вычислений, алгебраических преобразований, решения уравнений и неравенств, а также инструментальных и графических навыков.
От математики как науки математика как учебный предмет отличается не только объемом, системой и глубиной изложения, но и прикладной направленностью изучаемых вопросов.
Учебный курс математики постоянно оказывается перед необходимостью преодолевать противоречие между математикой — развивающейся наукой — и стабильным ядром математики — учебным предметом. Развитие науки требует непрерывного обновления содержания математического образования, сближения учебного предмета с наукой, соответствия его содержания социальному заказу общества.
Для современного этапа развития математики как учебного предмета характерны: жесткий отбор основ содержания; четкое определение конкретных целей обучения, меж предметных связей, требований к математической подготовке учащихся на каждом этапе обучения; усиление воспитывающей и развивающей роли математики, ее связи с жизнью; систематическое формирование интереса учащихся к предмету и его приложениям.
Содержание учебного предмета математики меняется со временем. Это обусловлено следующими причинами:
1.Расширение целей обучения и появление новых требований к школьной подготовке связано с развитием общества оказывают большое влияние на определение содержания математики и уровня овладения мат. знаниями, умениями, навыками.
2.Непрерывное развитие самой науки влечёт за собой обновление содержания учебного предмета.
3.Усиление общего развития учащихся в процессе развития общества предопределяет более раннее изучение предмета.
4.Развитие мпм повышает доступность и эффективность обучения школьников.
Психолого-педагогические основы обучения математики.
Классификация понятий
Классификации считается правильной, если:
признак, по которому проводится классификация остается неизменным в процессе классификации;
сумма объемов понятий, получаемых при классификации, равна объему исходного понятия;
в процессе классификации осуществляется переход к ближайшему в родовом понятии виду.
Виды классификаций
дихотомическая( трихотомическая), где осуществляется многоступенчатое разбиение на два (три) противоречащих понятия;
иерархическая, где каждый член является соподчиненным понятием;
последовательная, где классификация проводится по нескольким основаниям.
При помощи классификации на основе сходства и различий объектов раскрывается объем понятия.
Образование понятия
1)Выделение с помощью анализа признаков объекта
2)Соединение с помощью синтеза существенных признаков объекта
3)Отбрасывание с помощью абстрагирования несущественных признаков
4)Образование с помощью обобщения единого целого, являющегося понятием
Виды понятий
Сравнимыми называются понятия, если можно указать общий для них универсум (множество объектов, в терминах которого определяются понятия);
Совместными называются понятия, объемы которых имеют общие элементы
Равнозначныминазываются понятия, объемы которых полностью совпадают.
Пересекающимися называются понятия, объемы которых частично совпадают.
Находящимися в отношении включения называются понятия, если объем одного входит в объем другого.
Математическое предложение как средство выражения суждения. Основные виды математических суждений. Условная форма математических предложений. Четыре вида предложений, записанных в условной форме. Связь между их истинностью. Необходимое и достаточное условия.
Характерным признаком суждения является обязательное наличие истинности или ложности в выражающем его предложении.
Например, предложение «треугольник АВС равнобедренный» выражает некоторое суждение; предложение «Будет ли АВС равнобедренным?» не выражает суждения.
Математика представляет собой определенную систему суждений, выраженных в математических предложениях посредством математических или логических терминов или соответствующих им символов.
Виды теорем:
3) Из не А следует не Б. ( ) противоположное утверждение.
4) Из не Б следует не А. ( ) контрапозитивное утверждение.
Если импликация P=>Q является теоремой, то : условие P называется достаточным условием для условия Q, а условие Q – необходимым условием для условия P.
Если теоремами являются импликации P => Q и Q=> P, то каждое из условий является необходимым и достаточным для другого.
Этапы работы с теоремой в школе
Профессиональный – выполнение логико-математического анализа, выбор методов работы, отбор содержания;
Подготовительный – актуализация необходимых знаний учащихся, мотивация необходимости изучения факта;
Введение формулировки теоремы и осуществление ее доказательства- первичное усвоение факта и его доказательства учащимися;
Применение теоремы в качестве аргумента при выводе следствий.
Примеры
Часто в формулировках теорем используется выражение «необходимо и достаточно» (ПРИЗНАК). В логике это выражение соответствует эквиваленции, которая, как известно, представима в виде конъюнкции двух импликаций. Одна из этих импликаций выражает теорему, доказывающую НЕОБХОДИМОСТЬ признака, другая выражает теорему, доказывающую ДОСТАТОЧНОСТЬ признака. Например, признак перпендикулярности двух плоскостей:
«Для того чтобы две плоскости были перпендикулярны, НЕОБХОДИМО и ДОСТАТОЧНО, чтобы одна из них проходила через прямую, перпендикулярную к другой», может быть сформулирован и так: «Две плоскости перпендикулярны, ЕСЛИ И ТОЛЬКО ЕСЛИ одна из них проходит через прямую, перпендикулярную к другой»:
Типы уроков
1. Урок по ознакомлению с новым материалом (по формированию понятия).
2.Урок по закреплению изученного материала.
3.Урок проверки знаний, умений и навыков.
4.Урок по систематизации и обобщению изученного материала.
5.Урок контроля и коррекции знаний и умений учащихся.
6. Комбинированный урок.
В современных условиях к ведущим требованиям к уроку целесообразно отнести:
· необходимость построения процесса обучения на основании объективных закономерностей психологии обучения и принципов дидактики (научности, доступности, наглядности, сознательности и активности, систематичности и последовательности обучения, принципов воспитывающего и развивающего обучения, связи обучения с жизнью, сотрудничества, гуманизации);
· формулировка учителем образовательной, воспитательной и развивающей задач и обеспечение условий их решения на протяжении всего урока;
· отбор содержания материала, соответствующего уровню современных достижений науки и процесса обучения;
· чёткое продумывание структуры урока, прогнозирование уровня усвоения учащимися знаний, сформированности их умений и навыков;
· целесообразный отбор разнообразных методов и приёмов обучения, их оптимальное сочетание, осуществление стимулирования и контроля, сочетание индивидуальной и коллективной форм работы на уроке;
· рациональное использование времени;
· организацию полного цикла познавательной деятельности школьников;
· создание атмосферы комфортности и доброжелательности, успеха, заинтересованности учащихся в результате обучения, условий успешного учения;
· планирование системы уроков в целях усиления их воспитательной, развивающей функций и прогнозирования результатов познавательной деятельности школьников.
Контроль и оценка знаний учащихся по математике. Различные виды письменного и устного контроля. Организация контроля и оценки знаний, навыков и умений школьников по математике, виды контроля (текущий, тематический, итоговый), формы контроля (устные опросы, письменные работы, зачеты, экзамены, централизованное тестирование).
Контроль знаний учащихся является составной частью процесса обучения. По определению контроль это соотношение достигнутых результатов с запланированными целями обучения. Проверка знаний учащихся должна давать сведения не только о правильности или неправильности конечного результата выполненной деятельности, но и о ней самой: соответствует ли форма действий данному этапу усвоения. Правильно поставленный контроль учебной деятельности учащихся позволяет учителю оценивать получаемые ими знания, умения, навыки, вовремя оказать необходимую помощь и добиваться поставленных целей обучения. Все это в совокупности создает благоприятные условия для развития познавательных способностей учащихся и активизации их самостоятельной работы на уроках математики. ВИДЫ КОНТРОЛЯ
Текущий контроль проводится на первых этапах формирования умений и навыков, что позволяет анализировать процесс их становления. Текущий контроль предполагает использование различных форм проверки знаний, умений, навыков учащихся: индивидуальных и фронтальных опросов, регулярных проверок текущих письменных классных и домашних работ, различного рода проверочных работ (предупредительных, объяснительных, зрительных, творческих диктантов, письма по памяти и др.). Все названные формы проверки усвоения знаний и навыков учащихся носят обучающий, а не контролирующий характер, поэтому оценка в баллах не обязательна.
Тематический контроль предполагает проверку усвоения программного материала по наиболее значимым темам учебных предметов. Тематические контрольные работы проводятся сразу после изучения ключевых тем программы и позволяют учителю выяснить степень овладения учащимися только что изученным материалом. Тематические контрольные работы могут носить разноуровневый характер в зависимости от подготовленности класса, использования альтернативных программ обучения и т.д.
Итоговый контроль является способом проверки достигнутых учащимися знаний и навыков, обеспечивающих дальнейшее обучение. Цель проведения итогового контроля – государственная проверка выполнения требований школьной программы за истекший период работы (учебную четверть, полугодие, год), получение объективных данных. Итоговые контрольные работы имеют особое значение для учёта успеваемости каждого ученика, являются основными критериями оценки работы ученика и учителя. Они не должны завышать или занижать уровень программных требований.
Широко применяемым методом контроля в обучении математикеявляется проверка письменно-графических работ. Этот метод имеет свои качественные особенности: большая объективность по сравнению с устнойпроверкой, охват нужного числа проверяемых, экономия времени. Применениеписьменных работ используется для:
1) Проверки знания теоретического материала
2) Умения применять его к решению задач
3) Контроля сформированных навыков
С помощью этого метода получают данные об умении учащихся применять полученные знания при решении практических задач, пользоваться различными таблицами, формулами, чертежными и измерительными инструментами, приборами. Учитель получает отчет ученика, в котором приводится только результат илисхематически описаны план практической работы и ее результаты. Это несколько затрудняет проверку и оценку каждого действия ученика. Поэтому на практике в проверочном задании приводиться алгоритм его выполнения, чтопозволяет осуществить такую проверку правильности действий ученика. Всеработы проверяются, но оцениваются по-разному, по результатам обзорных работ оценки выставляются в журнал, по результатам тренировочных работможно выставить лишь положительные оценки.
Основная цель контроля и оценки знаний учащихся по математики – определение качества усвоения учащимися уч материала, уровня овладения ими ЗУН., предусмотренными учебн программами. Проверка знаний учащихся должна давать сведения не только о правильности или неправильности конечного результата выполненной деятельности, но и о ней самой: соответствует ли форма действий данному этапу усвоения. Правильно поставленный контроль учебной деятельности учащихся позволяет учителю оценивать получаемые ими знания, умения, навыки, вовремя оказать необходимую помощь и добиваться поставленных целей обучения. Все это в совокупности создает благоприятные условия для развития познавательных способностей учащихся и активизации их самостоятельной работы на уроках математики. Без хорошо налаженной проверки и своевременной оценки результатов нельзя говорить об эффективности обучения математике.
Устная проверка организуется по-разному, в зависимости от ее цели и от содержания проверяемого материала. Среди целевых установок проверки можно выделить следующие: проверить выполнение домашнего задания, выявить подготовленность учащихся к изучению нового материала, проверить степень понимания и усвоения новых знаний. В зависимости от содержания она
проводится по материалу предшествующего урока или по отдельным разделам и
Формы устного контроля знаний:
Формы письменного контроля:
Воспитание у учащихся потребности в доказательствах теорем. Методика обучения учащихся теоремам и их доказательствам. Подготовка учителя к доказательству теорем на уроке.
Уч-ся затрудняются в усвоении д-в, нередко заучивают их механически, не осознают необходимости д-в. Эти затруднения являются следствием сложившейся практики обучения, в которой не выдерживается постепенность в переходе от индуктивных методов, исп. в 5-6 кл., к дедуктивным, встреч. при изучении геометрии. В школе недостаточное внимание уделяется выявлению сущности д-ва, его преимуществ – общности, точности и объективности. Актуальной является такая организация работы с уч-ся, когда они убеждаются в необходимости д-в и создаются условия для должного и сознательного усвоения их.
Теоремы док-ются по двум основаниям: 1) по построению цепочки рассуждений (прямое и косвенное) 2) по математическому аппарату, используемое в д-ве.
Прямое – основывается на каком-нибудь несомненном начале на основе которого непосредственно рассуждениями устанавливается истинность теоремы. Доказательные методы: синтетический (при построении цепочки рассуждений основная мысль двигается от условия теоремы к ее заключению), аналитический (обратное движение мысли от заключения теоремы к условию), ММИ.
+листочек распечатки
1.22Дифференциация в обучении школьников математике в системе основного и дополнительного образования.
В процессе обучения школьники должны овладеть не только конкретными математическими знаниями, но и знаниями о способах, средствах и формах рациональной учебной деятельности. Учебный процесс следует строить так, чтобы ученик осознал структуру учебного материала, необходимость освоения основного содержания, и имел определенную свободу в выборе средств обучения.
Определив содержательно-математические уровни учебного материала и индивидуально способности учеников, нужно постоянно и последовательно ставить перед ними более высокие цели для углубления знаний и умственного развития. Ученик принимает более высокие цели в обучении, если находится в условиях, вызывающих желание учиться на пределе своих возможностей. Такие условия создаются в ученической среде, где осуществляется педагогика сотрудничества..
В условиях внутренней дифференциации обучения математике школьники довольно быстро начинают понимать преимущества работы на более высоких уровнях, в результате возрастает их прагматизм и сознание учебы.
Таким образом, дифференцированная учебная деятельность развивает всех учащихся. Дети усваивают знания и умения, у них формируется внутренняя потребность в знаниях. Учеба имеет творческий характер и связана с преобразованием учебного материала.
Полезное решение одной задачи несколькими методами или решение внешне похожих (по условию) задач, которые требуют различных методов или подходов.Интеграция содержания математического образования осуществляется в соответствующих технологиях обучения.
1.23Развитие математических способностей и воспитание учащихся в процессе математического образования.
Продуктивность памяти характеризуется ее объемом, протяженностью, скоростью, точностью и подготовленность. Значительное влияние на запоминание и накопление знаний имеет завершенность или незавершенность умственных действий. Известно, что если решение задачи не завершено, то задача запоминается гораздо лучше, чем сразу выполненное задание (эффект Зэйгарник). Важнейшим и ответственным моментом в процессе поиска информации в памяти является локализация идеи решения. Поиск идеи базируется на интегрированных представлениях о различных видах когнитивной деятельности.
Идеи решения представляют собой ассоциированные опоры, которые могут быть взяты за основу решения. Удачные идеи (удачный выбор) оставляют глубокий отпечаток в долгосрочной памяти и являются стимулами для новых идей. Овладение учащимися общими методами решения задач подкрепляет эти идеи и является надежным компонентом при актуализации необходимой информации из долговременной памяти.
Как известно, основными процессами памяти являются запоминание, сохранение и восстановление информации. Психолога-педагогические исследования показывают, что произвольное запоминание наиболее эффективное, если осуществляется в процессе интенсивной умственной деятельности без принуждения на запоминание тех или иных понятий и их свойств; поэтому запоминается лучше то, что находится в динамике, постоянном развитии.
Развитие логического мышления и воспитание школьников при обучении математике.
Помимо освоения значительного объема математических знаний у школьников необходимо сформировать логическое мышление, носителем которого являются следующие логические знания (относящихся не только к математике):
1) уметь определять понятие и уточнять с помощью определений смысл используемых слов;
2) знать логический словарь;
3) знать правила классификации;
4) уметь выделять логическую структуру сказал;
5) правильно применять логические связки;
6) уметь правильно рассуждать и проверять эту правильность, находить и искоренять логическ ошибки;
7) знать наиболее распространенные методы и приемы доказательства.
Понятно, что перечисленные интеллектуальные знания ученик приобретает не только при изучении математики, но именно математика оказывает наибольшее влияние на их формирование.
Выводы и предложения.
Классификация анализа по времени педагогической деятельности
В современной дидактике выделяют основные виды анализа урока, определяющие время его проведения: предваряющий, текущий, ретроспективный (Е.С. Ильинская).
Предваряющий анализ соотносится с этапом подготовки учителя к уроку, когда возникает идея, замысел будущего урока без его временных и пространственных границ. Он сводится к анализу предусмотренного программой учебного материала, выдвижению целей и задач урока, определению методов, способов и приемов изложения материала, а также условий проведения занятия. В процессе такого анализа разрабатывается план или конспект конкретного урока.
Текущий анализурокаосуществл учителем во время его непосредственного проведения, которое часто сопровождается возникновением различных непредвиденных ситуаций.
Этот вид анализа урока предполагает высокий уровень оперирования учителем предметными, психологическими, педагогическими и методическими знаниями, принятие правильных решений в неординарной обстановке при дефиците времени. Он является показателем его профессионализма.
Ретроспективный анализ урока является завершающим этапом в деятельности учителя по организации и проведению урока. Он играет исключительно важную роль в процессе совершенствования педагогического мастерства.
Данный вид анализа предполагает обсуждение результатов реализации запланированного образа урока, отраженного в виде его конспекта.
При проведении анализа урока необходимо следовать определенным правилам, соблюдение которых способствует созданию атмосферы комфортности и взаимоуважения в процессе обсуждения, что позволяет учителю объективно оценить замечания, советы и рекомендации коллег по совершенствованию урока.
Предмет, цели и задачи методики преподавания математики и ее связи с другими науками.
Методика преподавания математики — наука о математике как учебном предмете и закономерностях процесса обучения математике учащихся различных возрастных групп и способностей; методика обучения математике — это педагогическая наука о задачах, содержании и методах обучения математике. Цели математике: общеобразовательные (овладение учащимися определённого объёма математических ЗУНов в соответствии с программой), воспитательные (формирование мировоззрения, важнейших моральных качеств, готовности к труду), развивающие (развитие логических структур и математического стиля мышления), практические (формирование умения применять математические знания в конкретных ситуациях, при решении практических задач).
Основными задачами методики преподавания математики являются: определение конкретных целей изучения математики по классам, темам, урокам; отбор содержания учебного предмета в соответствии с целями и познавательными возможностями учащихся; разработка наиболее рациональных методов и организационных форм обучения, направленных на достижение поставленных целей; выбор необходимых средств обучения и разработка методики их применения в практике работы учителя математики.
Предметом методики обучения математике являются цели и содержание математического образования, методы, средства и формы обучения математике.