где в спинном мозге расположены чувствительные нейроны

Где в спинном мозге расположены чувствительные нейроны

Взаиморасположение серого и белого вещества на разных уровнях спинного мозга представлено на рисунке ниже. Белое вещество представлено преимущественно аксонами и дендритами и образует задние, передние и боковые канатики (от лат. funiculus — «канатик») спинного мозга, которые затем разделяются на пучки нервных волокон (от лат. fascicule—«пучок»). Шейное (сегменты С5-Т1) и пояснично-крестцовое (сегменты L1-S2) утолщения образованы за счет увеличения объема серого вещества в данных сегментах, что необходимо для иннервации конечностей на противоположной стороне тела. Белое вещество больше представлено в верхних отделах спинного мозга, поскольку там проходят чувствительные и двигательные волокна, иннервирующие конечности.

Так, в заднем канатике спинного мозга располагается тонкий пучок, по которому передаются импульсы от нижних конечностей. Этот пучок представлен как в шейных, так и в пояснично-крестцовых сегментах. Напротив, клиновидный пучок, передающий импульсы от верхних конечностей, не представлен в поясничных сегментах спинного мозга.

Несмотря на то, что деление спинного мозга на пронумерованные сегменты (как указано выше) соответственно парам спинномозговых корешков довольно удобно для практического использования, фактически спинной мозг не имеет четкого сегментарного строения. Группы ядер, видимые на поперечных срезах спинного мозга, на самом деле представляют собой часть непрерывных клеточных столбиков, которые в большинстве случаев распространяются на несколько сегментов.

где в спинном мозге расположены чувствительные нейроны. Смотреть фото где в спинном мозге расположены чувствительные нейроны. Смотреть картинку где в спинном мозге расположены чувствительные нейроны. Картинка про где в спинном мозге расположены чувствительные нейроны. Фото где в спинном мозге расположены чувствительные нейроныПоперечные срезы спинного мозга на различных уровнях.

а) Типы нейронов спинного мозга. Нейроны спинного мозга наименьшего размера (диаметром 5-20 нм) — промежуточные, их тела располагаются в спинном мозге. В то время как отростки одних промежуточных нейронов располагаются в пределах одного сегмента спинного мозга, аксоны других промежуточных нейронов распространяются в составе белого вещества спинного мозга на несколько сегментов вверх или вниз, тем самым обеспечивая связь между ними. Такие аксоны называют проприоспинальными (собственными) волокнами, которые формируют собственные пучки.

Большинство таких промежуточных нейронов участвует в формировании спинномозговых рефлексов. Другие промежуточные нейроны располагаются между волокнами нисходящих путей и мотонейронами, участвующими в регуляции двигательной активности. Кроме того, функция некоторых промежуточных нейронов заключается в проведении чувствительных импульсов от низших уровней ЦНС к высшим.

Наиболее часто встречаемый тип нейронов в сером веществе — нейроны среднего размера (диаметром 20-50 нм). Большинство из них выполняет функцию промежуточного звена (ретрансляции) при передаче афферентных импульсов от задних корешков к головному мозгу посредством аксонов, которые образуют тракты. Трактом (проводящим путем) считают совокупность нервных волокон, выполняющих единую функцию. Как будет показано далее, термин «тракт» часто употребляют некорректно, поскольку изначально полагают, что входящие в состав группы волокна выполняют одну функцию, однако на самом деле данная группа представлена волокнами разных функциональных классов.

Наиболее крупные нейроны в спинном мозге — а-мотонейроны (диаметром 5-20 нм), которые иннервируют скелетные мышцы. Среди них в сером веществе передних рогов диффузно располагаются меньшие по размеру у-мотонейроны, осуществляющие эфферентную иннервацию нервно-мышечных веретен. В средней части передних рогов находятся клетки Реншоу, функция которых заключается в торможении а-мотонейронов.

Спинномозговые рефлекторные дуги, которые начинаются от мышечных веретен и рецепторов сухожилий, защитный рефлекс описна в отдельных статьях на сайте.

На основе цитоархитектонических характеристик (например, размер нейронов, особенности окраски, наличие рецепторов и нейронных связей) серое вещество спинного мозга принято разделять на 10 слоев (спинномозговых пластинок), называемых пластинами Рекседа. Эти пластины были выделены с описательной целью, и не всегда какой-либо пластине соответствует определенная функция. Структура пластин меняется в зависимости от изучаемого уровня спинного мозга: в то время как на одном уровне в пределах пластины можно наблюдать определенные ядра, на другом уровне они будут выражены не так явно.

где в спинном мозге расположены чувствительные нейроны. Смотреть фото где в спинном мозге расположены чувствительные нейроны. Смотреть картинку где в спинном мозге расположены чувствительные нейроны. Картинка про где в спинном мозге расположены чувствительные нейроны. Фото где в спинном мозге расположены чувствительные нейроныДва сегмента спинного мозга. Изображена столбчатая организация ядер переднего рога спинного мозга. где в спинном мозге расположены чувствительные нейроны. Смотреть фото где в спинном мозге расположены чувствительные нейроны. Смотреть картинку где в спинном мозге расположены чувствительные нейроны. Картинка про где в спинном мозге расположены чувствительные нейроны. Фото где в спинном мозге расположены чувствительные нейроныСпинномозговые пластинки (пластины Рекседа) (I-X) и скопления тел нейронов (ядра) на среднем грудном уровне спинного мозга.

б) Спинальные ганглии. Спинальные, или заднекорешковые, ганглии (спинномозговые узлы) расположены по ходу задних корешков спинного мозга в области межпозвоночных отверстий. В этой области передние и задние корешки соединяются и формируют спинномозговые нервы. Грудные спинальные ганглии содержат около 50000 униполярных нейронов, а проводящие пути чувствительной иннервации от верхних и нижних конечностей — около 100000. От тела униполярных (или, точнее, псевдоуниполярных) нейронов отходит только один отросток — короткий стволовой аксон. В связи с этим аксоны и дендриты этих нейронов морфологически неотличимы. Отдельные клетки ганглия окружены модифицированными шванновскими клетками — амфицитами (клетками-сателлитами,или мантийными глиоцитами).

1. Центральные окончания чувствительных нервных волокон. В зоне вступления волокон заднего корешка в спинной мозг чувствительные нервные волокна делятся на внутренние и наружные пучки. Внутренний пучок содержит крупные и средние волокна, которые в дальнейшем в пределах заднего канатика делятся на восходящие и нисходящие ветви. Затем ход волокон ветвей отклоняется в сторону заднего рога спинного мозга, где часть из них образует синапсы в области заднего ядра (ядра Кларка). Наиболее крупные восходящие волокна поднимаются до ядер задних столбов (тонкое/клиновидное) в продолговатом мозге, формируя при этом основную часть нервных волокон в составе тонкого и клиновидного пучков.

Наружный пучок образован небольшими волокнами (А δ-и С-волокна), которые при вступлении в спинной мозг делятся на восходящие и нисходящие ветви в области пучка Лиссауэра и образуют синапсы с нейронами в составе желатинозной субстанции. Некоторые волокна образуют синапсы с дендритами нейронов в собственном ядре, с которого начинается спинно-таламический проводящий путь.

где в спинном мозге расположены чувствительные нейроны. Смотреть фото где в спинном мозге расположены чувствительные нейроны. Смотреть картинку где в спинном мозге расположены чувствительные нейроны. Картинка про где в спинном мозге расположены чувствительные нейроны. Фото где в спинном мозге расположены чувствительные нейроныСпинальный ганглий.
Обратите внимание на Т-образное разделение волокон стволового аксона в нижней части рисунка:
именно по этой причине эти нейроны называют «псевдоу-ниполярными».
где в спинном мозге расположены чувствительные нейроны. Смотреть фото где в спинном мозге расположены чувствительные нейроны. Смотреть картинку где в спинном мозге расположены чувствительные нейроны. Картинка про где в спинном мозге расположены чувствительные нейроны. Фото где в спинном мозге расположены чувствительные нейроныОкончания первичных чувствительных нейронов на уровне заднего рога спинного мозга.

Редактор: Искандер Милевски. Дата публикации: 15.11.2018

Источник

Где в спинном мозге расположены чувствительные нейроны

В передних рогах располагаются двигательные (моторные) нейроны. Их аксоны выходят из спинного мозга по передним корешкам и в составе периферических нервов достигают скелетных мышц, где заканчиваются на каждом мышечном волокне нервно-мышечным синапсом (моторной бляшкой).

Моторные нейроны (мотонейроны) — это крупные мультиполярные клетки (диаметр 100-140 мкм). Общее их количество составляет 2-3 млн. Каждый моторный нейрон иннервирует от единиц до тысяч мышечных волокон, образуя двигательную единицу. На поперечном срезе спинного мозга моторные нейроны группируются в ядра; на продольном — в колонки. Моторные нейроны каждой колонки иннервируют только одну мышцу. Различают медиальную, центральную и латеральную группы (ядра) моторных нейронов.

Медиальная группа нейронов иннервирует мышцы туловища, центральная — мышцы тазового и плечевого пояса, латеральная — мышцы конечностей. Нейроны в функциональном отношении подразделяются на альфа-мотонейроны большие, альфа-мотонейроны малые и гамма-мотонейроны. Альфа-мотонейроны большие передают импульсы на экстрафузальные мышечные волокна, вызывая быстрые фазические сокращения. Альфа-мотонейроны малые поддерживают тонус скелетных мышц. Гамма-мотонейроны направляют аксоны к интрафузальным мышечным волокнам нервно-мышечного веретена. Синапсы покрывают примерно 50% поверхности тела и дендритов мотонейрона.

где в спинном мозге расположены чувствительные нейроны. Смотреть фото где в спинном мозге расположены чувствительные нейроны. Смотреть картинку где в спинном мозге расположены чувствительные нейроны. Картинка про где в спинном мозге расположены чувствительные нейроны. Фото где в спинном мозге расположены чувствительные нейроны

Среднее число синапсов на моторном нейроне спинного мозга человека достигает 25-35 тыс. Одновременно функционально активными могут быть тысячи синапсов. Каждый моторный нейрон испытывает множественное влияние, идущее от нейронов спинального и супраспинального уровней. При этом возможно возвратное торможение моторного нейрона благодаря тому, что коллатераль аксона моторного нейрона контактирует с вставочным нейроном (клеткой Реншоу), а аксоны клетки Реншоу оканчиваются на теле моторного нейрона.

Наряду с соматическими рефлекторными дугами через спинной мозг проходят вегетативные рефлекторные дуги, относящиеся к автономной (вегетативной) нервной системе.

Спинномозговые узлы

Спинномозговые узлы расположены в межпозвонковых отверстиях по ходу задних корешков спинного мозга. Они покрыты соединительнотканной капсулой. В пределах узла тела псевдоуниполярных нейронов лежат на периферии группами, разделенными прослойками соединительной ткани, тогда как нервные волокна проходят через центральную часть. В гистогенезе из биполярных нейронов формируется клетка, отростки которой (аксон и дендрит) тесно сближаются (клетка приобретает вид псевдоуниполярной), а затем Т-образно расходятся. Оба отростка становятся миелинизированными и называются аксонами.

Отросток, который вступает в спинной мозг (возникший из аксона биполярного нейрона) принято называть центральным, а направляющийся на периферию и заканчивающийся рецептором (возникший из дендрита) — периферическим.

Тела нейронов имеют грушевидную или округлую форму, размеры тел нейронов вариабельны — от 30 до 120 мкм в диаметре. В цитоплазме крупных нейронов хорошо развит синтетический аппарат. Вокруг нейронов находятся многочисленные глиоциты ганглия (мантийные клетки), отростки которых формируют капсулу. Между телом нейрона и глиоцитами формируются многочисленные инвагинации плазмолеммы. Здесь возможны метаболические взаимообмены глиоцита и нейрона. Вокруг отростков нейронов располагаются леммоциты, формирующие миелиновую оболочку, и фибробласты соединительной ткани.

Центральные отростки чувствительных нейронов формируют задние корешки и передают нервные импульсы на ассоциативные нейроны спинного мозга. Периферические отростки в составе смешанных спинномозговых нервов направляются на периферию и в органах формируют рецепторы.

Источник

Спинной мозг и периферические нервы человека

где в спинном мозге расположены чувствительные нейроны. Смотреть фото где в спинном мозге расположены чувствительные нейроны. Смотреть картинку где в спинном мозге расположены чувствительные нейроны. Картинка про где в спинном мозге расположены чувствительные нейроны. Фото где в спинном мозге расположены чувствительные нейроны

где в спинном мозге расположены чувствительные нейроны. Смотреть фото где в спинном мозге расположены чувствительные нейроны. Смотреть картинку где в спинном мозге расположены чувствительные нейроны. Картинка про где в спинном мозге расположены чувствительные нейроны. Фото где в спинном мозге расположены чувствительные нейроныОдним из важнейших органов центральной нервной системы является спинной мозг. Эта часть центральной нервной системы связана с органами и кожей. Спинной мозг выполняет две основные функции:

Выполнение первой обеспечивается проводящими путями, а второй – центральными отделами мозга. Для внутреннего строения спинного мозга характерно наличие центрального канала – это полость, расположенная по всей длине спинномозгового тяжа. Спинной мозг условно разделяется на сегменты, каждому из которых соответствует одна пара нервов. Как и головной мозг, спинной образован белым и серым веществом.

Но если в головном мозге серое вещество находится снаружи, то спинному мозгу свойственно внутреннее его расположение. Серое вещество – это скопление миллионов нейронов. В поперечном сечении серое вещество по очертаниям напоминает бабочку и имеет несколько отделов, называемых рогами. Продольно серое вещество расположено в виде столбов и также разделяется на задний, передний и боковой столбы. Вокруг серого вещества располагаются нервные волокна – отростки нейронов, или белое вещество мозга.

где в спинном мозге расположены чувствительные нейроны. Смотреть фото где в спинном мозге расположены чувствительные нейроны. Смотреть картинку где в спинном мозге расположены чувствительные нейроны. Картинка про где в спинном мозге расположены чувствительные нейроны. Фото где в спинном мозге расположены чувствительные нейроныПериферические нервы находятся за пределами центральной нервной системы. Эти нервы являются сообщением между головным, спинным мозгом и органами человеческого тела. Три составляющие периферической нервной системы:

Периферические нервы участвуют в обеспечении согласованной работы нервной системы, выступая транспортировщиками сигналов и импульсов. Если в головном мозге появилась команда согнуть руку в локте, то именно благодаря периферическим нервам этот сигнал поступает к мышцам, активизируя выполнение движения. Перемещение импульсов от органов в головной и спинной мозг происходит по сенсорным нейронам. Передача же импульсов из нервных центров к мышцам и органам осуществляется при прямом участии двигательных нейронов.

Задачи периферических нервов многообразны – это и координация и контроль движений, и проведение импульсов, получаемых из внешней среды, и обеспечение своевременного реагирования организма на опасность, и активизация работы внутренних органов (начиная от пищеварения и заканчивая сердцебиением и дыханием), и ряд других функций.

Источник

Нейроинтерфейсы: как наука ставит людей на ноги

Нейроинтерфейсы: как наука ставит людей на ноги

Роботизированный экзоскелет, управляемый нейроинтерфейсом.

Автор
Редакторы

Статья на конкурс «Био/Мол/Текст»: В СМИ часто можно услышать о проектах, которые помогают парализованным людям взаимодействовать с окружающим миром. Но в этой статье мы поговорим о не менее интересной, но более обойдённой вниманием теме — о нейроинтерфейсах, помогающих людям с параличом конечностей восстанавливать самостоятельную двигательную активность.

где в спинном мозге расположены чувствительные нейроны. Смотреть фото где в спинном мозге расположены чувствительные нейроны. Смотреть картинку где в спинном мозге расположены чувствительные нейроны. Картинка про где в спинном мозге расположены чувствительные нейроны. Фото где в спинном мозге расположены чувствительные нейроны

Конкурс «Био/Мол/Текст»-2020/2021

Эта работа опубликована в номинации «Своя работа» конкурса «Био/Мол/Текст»-2020/2021.

где в спинном мозге расположены чувствительные нейроны. Смотреть фото где в спинном мозге расположены чувствительные нейроны. Смотреть картинку где в спинном мозге расположены чувствительные нейроны. Картинка про где в спинном мозге расположены чувствительные нейроны. Фото где в спинном мозге расположены чувствительные нейроны

Генеральный партнер конкурса — ежегодная биотехнологическая конференция BiotechClub, организованная международной инновационной биотехнологической компанией BIOCAD.

где в спинном мозге расположены чувствительные нейроны. Смотреть фото где в спинном мозге расположены чувствительные нейроны. Смотреть картинку где в спинном мозге расположены чувствительные нейроны. Картинка про где в спинном мозге расположены чувствительные нейроны. Фото где в спинном мозге расположены чувствительные нейроны

Спонсор конкурса — компания SkyGen: передовой дистрибьютор продукции для life science на российском рынке.

Спонсор конкурса — компания «Диаэм»: крупнейший поставщик оборудования, реагентов и расходных материалов для биологических исследований и производств.

Более 5 миллионов человек в мире страдают от разной формы параличей, основные причины которых — инсульт (34%) и повреждение спинного мозга (24%).

Инсульт в настоящее время является одной из основных причин инвалидизации населения. В России ежегодно регистрируется более 450 000 инсультов, и инвалидами становятся 70–80% выживших после инсульта, причём примерно 20–30% из них нуждаются в постоянном постороннем уходе.

За последние 70 лет количество больных с травмой спинного мозга возросло в 200 раз, и в России подобные повреждения ежегодно получают более 8 000 человек. Чаще всего это приводит к неспособности больного самостоятельно передвигаться и обеспечивать свои основные потребности. В результате использования инвалидной коляски уменьшается физическая активность, что провоцирует развитие ряда заболеваний: болезни сердца, остеопороз, пролежни. Поэтому идет активный поиск альтернативных методов восстановления способности двигаться. Одной из самых новых разработок в этом направлении является нейроинтерфейс.

Нейроинтерфейс (он же интерфейс «мозг-компьютер», ИМК) — система, позволяющая передавать сигналы мозга напрямую на внешнее устройство (это может быть инвалидная коляска, экзоскелет, компьютер и др.), фактически управлять «силой мысли» (рис. 1).

В «‎Биомолекуле» можно более подробно прочитать про историю развития нейрокомпьютерных технологий, а также про современный проект Neuralink Илона Маска [1], [2].

где в спинном мозге расположены чувствительные нейроны. Смотреть фото где в спинном мозге расположены чувствительные нейроны. Смотреть картинку где в спинном мозге расположены чувствительные нейроны. Картинка про где в спинном мозге расположены чувствительные нейроны. Фото где в спинном мозге расположены чувствительные нейроны

Рисунок 1. Схема работы ИМК.

адаптировано по материалам сайта Tritriwulansari

Методы регистрации сигналов мозга

Первое звено в схеме работы ИМК — это получение сигнала от мозга. Для этого используют следующие методы:

Сейчас в ИМК для получения информации об электрической активности мозга наиболее часто применяют ЭЭГ, так как она имеет высокое временное разрешение (электроды позволяют считывать немедленную активность отдельных участков мозга), относительно дешева, портативна и не представляет риска для пользователей. ИМК, основанные на ЭЭГ, состоят из набора сенсоров, улавливающих ЭЭГ-сигналы от различных областей мозга. Однако качество сигналов ЭЭГ ухудшается из-за того, что сигнал проходит через скальп, череп, а также множество других слоев, что создает шум.

Для уменьшения шума и улучшения качества записи прибегают к инвазивным способам — имплантированию внутрь черепа набора микроэлектродов [3]. Это подразумевает значительный риск для здоровья, из-за чего их редко задействуют в экспериментальной практике. В исследованиях ИМК существуют два инвазивных подхода: электрокортикография (ЭКоГ), при которой электроды располагаются на поверхности коры головного мозга, и интракортикальная запись нейронной активности — когда датчики имплантируют в кору (рис. 2). Такие решения в настоящее время применяют крайне редко, только в исключительных случаях: либо когда пациенту и так предстоит операция на мозге, либо когда это единственный шанс на возвращение возможности взаимодействовать с окружающим миром.

где в спинном мозге расположены чувствительные нейроны. Смотреть фото где в спинном мозге расположены чувствительные нейроны. Смотреть картинку где в спинном мозге расположены чувствительные нейроны. Картинка про где в спинном мозге расположены чувствительные нейроны. Фото где в спинном мозге расположены чувствительные нейроны

Рисунок 2. Схема расположения электродов для ЭЭГ, ЭКоГ и интракортикальных микроэлектродов.

Сенсомоторный ритм и моторная кора

Как мы уже говорили, цель ИМК — улавливание намерения пользователя посредством регистрации его мозговой активности. При регистрации мозговой активности с помощью ЭЭГ мы получаем графическое изображение сложного колебательного электрического процесса, в котором можно выделить ряд определённых ритмов, которые отличаются между собой по амплитуде и частоте: альфа, бета, дельта, мю и другие. Сейчас нас интересует мю-ритм, так как именно на его основе работают нейроинтерфейсы, используемые в нейрореабилитации движений.

Мю-ритм, или сенсомоторный ритм (СМР), имеет частоту 8–13 Гц и регистрируется над моторной областью коры головного мозга, расположенной в задней части прецентральной извилины (рис. 3). Подавление мю-ритма происходит тогда, когда человек совершает какое-либо движение или воображает выполнение движения — это называется десинхронизацией, связанной с событием (event-related desynchronization, ERD). Это происходит потому, что нейроны, которые до этого возбуждались синхронно, приобретают индивидуальные, не похожие друг на друга паттерны возбуждения. При этом человек может тренироваться в воображении движений, и со временем подавление мю-ритма при этом становится всё более выраженным, что используют при обучении управлению ИМК.

Для моторной коры характерна топическая организация. Это значит, что каждому участку коры соответствует определённый участок тела, который она контролирует. На рисунке 3 изображен гомункулус Пенфилда, части тела которого пропорциональны зонам мозга, в которых они представлены. Как видно из рисунка, представительства верхних и нижних конечностей находятся достаточно далеко друг от друга, благодаря чему возможно раздельное распознавание нейроинтерфейсом воображения движений рук и ног.

где в спинном мозге расположены чувствительные нейроны. Смотреть фото где в спинном мозге расположены чувствительные нейроны. Смотреть картинку где в спинном мозге расположены чувствительные нейроны. Картинка про где в спинном мозге расположены чувствительные нейроны. Фото где в спинном мозге расположены чувствительные нейроны

Рисунок 3. Соматосенсорный и моторный гомункулус.

адаптировано по материалам сайта BioNinja

Обратите внимание, что представительство нижних конечностей в моторной коре значительно меньше представительства верхних. Это легко объяснимо наличием мелкой моторики рук: мозгу нужно контролировать множество отдельных мышц пальцев. У ног же, наоборот, мало мышц, которыми нужно управлять, и они более крупные. К тому же видно, что представительство нижних конечностей попадает в межполушарную щель, что затрудняет распознавание сигналов ЭЭГ, генерируемых при воображении движений разных групп мышц ног. Поэтому использование ИМК для ног вызывает определённые сложности, и большинство существующих научных работ по нейрореабилитации с помощью ИМК посвящено именно верхним конечностям, так как с их воображением проще работать. В лаборатории физиологии движений Института физиологии им. И.П. Павлова РАН, где работает автор, проводят исследования, направленные на изучение процессов реабилитации нижних конечностей, а также на возможность применения при этом чрескожной электростимуляции спинного мозга (ЧЭССМ) и специальных практик, помогающих увеличить эффективность управления ИМК [4].

Как эффективно воображать движения

Известны следующие особенности воображения движений, которые повышают его эффективность:

Кроме того, нами было показано, что эффективность воображения движений зависит от личностных характеристик человека [15].

Для эксперимента было набрано 44 человека с ведущей правой рукой. Все они проходили тестирование по опроснику Кеттелла, который определяет 16 основных индивидуальных особенностей. Далее испытуемые управляли ИМК, основанном на воображении движений рук. Оказалось, что при воображении движений правой руки успешнее экспрессивные чувствительные экстраверты, а при воображении движений левой руки — практичные, сдержанные, скептичные и не очень общительные люди.

Мы предполагаем, что это можно объяснить разным уровнем содержания дофамина в правом и левом полушариях, а также разницей в способах кодирования информации о движениях [16]. Более подробно об этом можно прочитать в статье, опубликованной автором и коллегами в журнале «Доклады Академии наук» [15]. Знание личных психологических параметров пользователя ИМК может помочь в разработке индивидуальных тренингов и методов подготовки перед управлением нейроинтерфейсами.

Зачем же нужно воображение движений и работа с нейроинтерфейсами? Как это может помочь людям с нарушениями движений? Разберём эти вопросы на примере двух самых распространенных причин двигательных расстройств — инсульта и травмы спинного мозга.

Механизмы нейропластичности

При инсульте происходит острое нарушение кровоснабжения головного мозга (либо в результате закупоривания сосуда тромбом — ишемический инсульт, либо в результате кровоизлияния — геморрагический). Так как вместе с кровью к нейронам перестаёт поступать всё, что необходимо им для жизнедеятельности, участки мозга, где остановилось кровообращение, отмирают. И если это зоны, отвечающие за двигательную активность — например, моторная область коры, то у больного возникает гемипарез, снижение силы мышц одной стороны тела, или гемиплегия, полный паралич половины тела.

Восстановление двигательной функции осуществляется в основном за счет механизмов нейропластичности — способности мозга изменяться под действием опыта: устанавливать новые связи между нейронами, разрушать старые и ненужные, восстанавливать утраченные после повреждения. В данных процессах принимают участие не только нейроны, но и клетки нейроглии, а также сосудистая система [17]. Также изменяется активность синапсов и их количество [18]. Для активации данных механизмов в медицине применяется двигательная реабилитация. Однако у пациентов с параличом или высокой степенью пареза осуществление реальных движений невозможно, поэтому прибегают к тренировкам с ИМК, основанном на воображении движений. При представлении движений активируются те же зоны мозга, которые также участвуют в подготовке реального действия и в его совершении, вследствие чего такая нейрореабилитация становится реальной [19].

Благодаря таким реабилитационным тренировкам происходит перестройка нейронов вокруг повреждённой области: увеличивается объём серого вещества в двигательной зоне мозга, а соседние участки берут на себя утраченные функции [20]. Двигательные области неповреждённого полушария также участвуют в этом процессе.

Эффективность этих занятий может быть повышена за счёт использования биологической обратной связи — зрительной или тактильной — когда пациент видит на экране монитора, насколько хорошо он справляется с заданием (воображением движения конечности), или когда он чувствует вибрацию от специального прибора при успешном выполнении задачи.

Также существуют системы, дающие двигательную обратную связь: например, когда человек воображает движение правой ноги, приводя её в движение специальным механизмом. По такому принципу работает система «Биокин» (ООО «Косима»), разработанная под руководством Герасименко Ю.П. (Институт физиологии им. И.П. Павлова РАН) (рис. 4) [21]. Она включает в себя обратную связь, функциональную электростимуляцию (ФЭС) и чрескожную электростимуляцию спинного мозга (ЧЭССМ), что делает её высокоэффективным инструментом в области нейрореабилитации нижних конечностей [22].

где в спинном мозге расположены чувствительные нейроны. Смотреть фото где в спинном мозге расположены чувствительные нейроны. Смотреть картинку где в спинном мозге расположены чувствительные нейроны. Картинка про где в спинном мозге расположены чувствительные нейроны. Фото где в спинном мозге расположены чувствительные нейроны

Рисунок 4. Биокин. Комплекс для нейрореабилитации нижних конечностей, основанный на применении ИМК с обратной связью, ФЭС (функциональной электростимуляции) и ЧЭССМ (чрескожной электростимуляции спинного мозга).

Такие системы позволяют замкнуть сенсомоторную петлю: от посылаемого мозгом эфферентного (исходящего) сигнала двигательной активности к афферентному (приходящему) сигналу о сенсорной обратной связи (рис. 5) [23].

где в спинном мозге расположены чувствительные нейроны. Смотреть фото где в спинном мозге расположены чувствительные нейроны. Смотреть картинку где в спинном мозге расположены чувствительные нейроны. Картинка про где в спинном мозге расположены чувствительные нейроны. Фото где в спинном мозге расположены чувствительные нейроны

Рисунок 5. Нейропластичность, вызываемая использованием ИМК, основанном на воображении движений. При повреждении моторных областей коры реальное движение становится невыполнимым, поэтому для активации процессов нейропластичности остаётся только возможность воображения движений. Использование ИМК со зрительной и тактильной обратной связью обеспечивает усиление этих процессов.

Данный механизм реабилитации может объяснить концепция пластичности Хебба: при одновременной активации двух связанных друг с другом нейронов усиливается их синаптическое взаимодействие, что приводит к более надёжному контакту между ними (рис. 6). Если предположить, что передача сигнала от моторной коры головного мозга к мышцам конечностей была нарушена из-за инсульта или травмы, то одновременная активация сенсорной и моторной коры может усиливать ранее неактивные контакты между нейронами за счет пластичности и таким образом вести к восстановлению двигательной функции конечностей [24].

где в спинном мозге расположены чувствительные нейроны. Смотреть фото где в спинном мозге расположены чувствительные нейроны. Смотреть картинку где в спинном мозге расположены чувствительные нейроны. Картинка про где в спинном мозге расположены чувствительные нейроны. Фото где в спинном мозге расположены чувствительные нейроны

Рисунок 6. Механизм пластичности Хебба. Усиление синаптического взаимодействия между двумя нейронами происходит из-за повторяющейся стимуляции постсинаптической клетки пресинаптической клеткой.

где в спинном мозге расположены чувствительные нейроны. Смотреть фото где в спинном мозге расположены чувствительные нейроны. Смотреть картинку где в спинном мозге расположены чувствительные нейроны. Картинка про где в спинном мозге расположены чувствительные нейроны. Фото где в спинном мозге расположены чувствительные нейроны

Рисунок 7. Образование новый нейронных связей в области повреждения спинного мозга (ПСМ).

При восстановлении двигательной функции после травмы спинного мозга задействованы те же механизмы нейропластичности. При таком повреждении часть нервных волокон, в том числе двигательных, оказывается прервана, что вызывает паралич конечностей, а часть сохраняет свою целостность. Благодаря этому при проведении нейрореабилитации существует возможность активации процессов нейропластичности: неповреждённые волокна образуют синаптические связи с двигательными нейронами (мотонейронами), которые, в свою очередь, передают сигнал мышцам (рис. 7) [25].

Для увеличения эффективности нейрореабилитации при помощи ИМК часто дополнительно используют функциональную электростимуляцию мышц (ФЭС). Она обеспечивает сокращение мышцы в тот момент, когда пользователь воображает движение с участием этой мышцы (рис. 8) [26]. Это приводит к усилению нейропластичности по механизму Хебба: происходит одновременная активация моторных областей головного мозга, передающих сигнал мотонейронам спинного мозга, и чувствительных нейронов, активируемых сокращающейся под влиянием ФЭС мышцей, что замыкает сенсомоторную петлю.

где в спинном мозге расположены чувствительные нейроны. Смотреть фото где в спинном мозге расположены чувствительные нейроны. Смотреть картинку где в спинном мозге расположены чувствительные нейроны. Картинка про где в спинном мозге расположены чувствительные нейроны. Фото где в спинном мозге расположены чувствительные нейроны

Рисунок 8. Система ИМК-ФЭС. При воображении движений сигнал из моторной коры обрабатывается компьютером (ПК) и передаётся к прибору функциональной электростимуляции (ФЭС), который вызывает сокращение соответствующей мышцы. Далее сигнал от мышцы передается в сенсорную кору, обеспечивая обратную связь.

Электростимуляция спинного мозга

В последние годы большую эффективность в нейрореабилитации после повреждения спинного мозга показала его электростимуляция (ЭССМ). Спинной мозг имеет два утолщения: в области шеи и поясницы, что соответствует месту выхода из них корешков двигательных нейронов верхних и нижних конечностей. В поясничном утолщении спинного мозга находятся специализированные нейронные сети, обеспечивающие автоматический процесс шагания (генераторы шагательных движений, ГШД). Иными словами, если наложить на твердую оболочку спинного мозга в месте поясничного утолщения электроды, подающие ток определенной амплитуды и частоты, можно вызвать непроизвольные шагательные движения даже у людей с параличом нижних конечностей [27]. Однако такой способ требует хирургического вмешательства, так что существует риск развития послеоперационных осложнений.

В настоящее время наиболее безопасной и безболезненной считается чрескожная электростимуляция спинного мозга (ЧЭССМ). На видео 1 (Edgerton Lab, University of California) можно видеть, как вызываются непроизвольные шагательные движения ног при облегченном положении больного, с подвешенными на рамах-качелях ногами [28].

Видео 1. Непроизвольная ходьба при чрескожной электростимуляции спинного мозга.

При использовании ЧЭССМ появляется вопрос правильного расположения стимулирующих электродов. Если при установке инвазивных электродов во время операции хорошо различимы сегменты и корешки спинного мозга, то при установке накожных электродов могут возникнуть затруднения с нахождением нужного участка. Данную задачу решают с помощью подачи одиночных импульсов на электрод и регистрации рефлекторных мышечных ответов — ведь каждому сегменту спинного мозга соответствуют строго определённые группы мышц.

Также существует проблема недостаточной амплитуды посылаемых импульсов — из-за дегенеративных процессов при повреждении спинного мозга требуется большая амплитуда стимуляции для получения нужного ответа. Однако это чревато получением ожогов. В нашей лаборатории было создано оптимальное устройство для неинвазивной электрической стимуляции спинного мозга [29].

Кроме того, была разработана система, детектирующая фазы шагательного цикла в онлайн-режиме и стимулирующая спинной мозг согласно этим фазам [30]. Во время ходьбы в разные моменты напрягаются разные мышцы, и под определёнными углами сгибаются суставы, что можно регистрировать специальными приборами — акселерометрами и гироскопами. Обе ноги движутся скоординировано, и на основании положения одной ноги можно предсказать положение другой. Принцип работы системы следующий: пациенту с гемипарезом на здоровую ногу накладываются датчики движения, которые передают сигнал к прибору для ЧЭССМ. Он, в свою очередь, стимулирует в определённые моменты времени группы мотонейронов спинного мозга, отвечающих за движение мышц-сгибателей и разгибателей ноги, что способствует нормализации ходьбы и восстановлению движения пораженной конечности.

Успехи современной нейрореабилитации

Самым масштабным исследованием в области нейрореабилитации с использованием ИМК, основанного на воображении движений, является работа Donati с соавторами, опубликованная в Nature в 2016 году [31]. В этом исследовании приняли участие восемь человек с параличом нижних конечностей, вызванным повреждением спинного мозга. Для них была разработана специальная система реабилитации, включающая в себя шесть этапов с увеличивающейся сложностью, и с каждым пациентом было проведено около 255 (!) сессий в течение года.

Первый этап включал в себя глубокое погружение в среду виртуальной реальности, во время которого испытуемый управлял перемещением своего аватара (компьютерного персонажа), воображая движение нижних конечностей в положении сидя. Затем пациент делал то же самое, только в положении стоя, с опорой на специальный стол. Во время третьего этапа проходили тренировки на беговой дорожке: испытуемый ходил с использованием прибора, поддерживающего вес тела (Lokomat). На четвёртом этапе осуществлялось движение ног уже в воздухе, а не по беговой дорожке. На пятом этапе пациент тренировался на беговой дорожке с помощью роботизированной системы, поддерживающей конечности и контролируемой ИМК. И на заключительной стадии испытуемый ходил в экзоскелете, управляемом ИМК: экзоскелет делал шаг, когда человек представлял себе движение соответствующей ноги. Во время всех тренингов испытуемые получали тактильную обратную связь — вибрацию, которая подавалась на предплечье, когда виртуальная или роботизированная нога с той же стороны касалась земли. Схему эксперимента вы можете увидеть на рисунке 9, а сам процесс реабилитации — на видео 2.

где в спинном мозге расположены чувствительные нейроны. Смотреть фото где в спинном мозге расположены чувствительные нейроны. Смотреть картинку где в спинном мозге расположены чувствительные нейроны. Картинка про где в спинном мозге расположены чувствительные нейроны. Фото где в спинном мозге расположены чувствительные нейроны

Рисунок 9. Схема эксперимента, включающая в себя шесть этапов: 1 — ИМК + виртуальная реальность (ВР) в положении сидя; 2 — ИМК + ВР в положении стоя; 3 — ходьба по беговой дорожке с поддержанием веса тела; 4 — движение ног в воздухе; 5 — ходьба по беговой дорожке с помощью роботизированной системы, контролируемой ИМК; 6 — ходьба в экзоскелете, управляемом ИМК. Обозначения: ЭЭГ — электроэнцефалография; ЭМГ — электромиография, регистрирующая активность мышц; Такт. — тактильная обратная связь.

Видео 2. Процесс проведения эксперимента.

Через 12 месяцев тренировок по этой системе у всех восьми пациентов повысились показатели по тактильным ощущениям, а также восстановился свободный контроль ключевых мышц нижних конечностей. В результате был виден заметный прогресс в их способности ходить. Многие пациенты смогли ходить при помощи вспомогательных приборов. Кроме этого, у всех пациентов было отмечено значительное повышение эмоциональной стабильности и оценки качества жизни, а также снизился уровень депрессивности и увеличилась самооценка. Улучшились состояние кожи и функция пищеварительной системы, что связано, по-видимому, с нормализацией активности симпатической и парасимпатической систем. Дело в том, что вдоль позвоночника расположены узлы вегетативной нервной системы, которая регулирует работу внутренних органов. Они повреждаются при травмировании спинного мозга, что вызывает нарушение деятельности пищеварительной системы, которая в свою очередь влияет на состояние кожи посредством выделения сигнальных молекул, в том числе и провоспалительных [32], [33].

Неврологическое восстановление было связано с механизмами пластичности как на уровне спинного мозга, так и на уровне сенсомоторной коры. Кортикальная и спинномозговая пластичность изменяет нейронные связи в сохранившейся области спинного мозга при помощи моторных и сенсорных связей (рис. 10).

где в спинном мозге расположены чувствительные нейроны. Смотреть фото где в спинном мозге расположены чувствительные нейроны. Смотреть картинку где в спинном мозге расположены чувствительные нейроны. Картинка про где в спинном мозге расположены чувствительные нейроны. Фото где в спинном мозге расположены чувствительные нейроны

Рисунок 10. Пластичность спинного мозга (СМ) и коры головного мозга, осуществляющаяся с помощью моторных (красных) и сенсорных (синих) связей.

Заключение

Современная наука в области нейрореабилитации стремительно развивается и достигает удивительных результатов — в буквальном смысле ставит на ноги людей, ранее прикованных к кровати или инвалидной коляске. Появляются новые, более эффективные способы регистрации сигналов мозга; использование ИМК дополняется использованием обратной связи, ФЭС и ЧЭССМ; углубляются знания о механизмах нейропластичности; проводятся масштабные исследования в области разработки техник нейрореабилитации. Однако остается проблема доступности данных методов. Они очень дорогостоящие и доступны только в определённых клиниках; далеко не каждый может себе их позволить. В нашей лаборатории ведётся разработка нейрореабилитационных систем, которые просты в применении и по цене доступны для закупок в государственных бюджетных больницах.

Благодарности

Автор выражает благодарность своему научному руководителю Бобровой Елене Вадимовне, заведующему лабораторией Герасименко Юрию Петровичу и безвременно покинувшему нас в прошлом году Александру Алексеевичу Фролову (01.11.1943–10.06.2020) — одному из ведущих российских исследователей в области ИМК.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *