у кого мозг без извилин
Ультразвуковое исследование мозга новорожденных детей (нормальная анатомия)
УЗИ сканер HS50
Доступная эффективность. Универсальный ультразвуковой сканер, компактный дизайн и инновационные возможности.
Показания для проведения эхографии мозга
Акустическим окном для исследования мозга может служить любое естественное отверстие в черепе, но в большинстве случаев используют большой родничок, поскольку он наиболее крупный и закрывается последним. Маленький размер родничка значительно ограничивает поле зрения, особенно при оценке периферических отделов мозга.
Для проведения эхоэнцефалографического исследования датчик располагают над передним родничком, ориентируя его так, чтобы получить ряд корональных (фронтальных) срезов, после чего переворачивают на 90° для выполнения сагиттального и парасагиттального сканирования. К дополнительным подходам относят сканирование через височную кость над ушной раковиной (аксиальный срез), а также сканирование через открытые швы, задний родничок и область атланто-затылочного сочленения.
По своей эхогенности структуры мозга и черепа могут быть разделены на три категории:
Нормальные варианты мозговых структур
Борозды и извилины. Борозды выглядят как эхогенные линейные структуры, разделяющие извилины. Активная дифференцировка извилин начинается с 28-й недели гестации; их анатомическое появление предшествует эхографической визуализации на 2-6 нед. Таким образом, по количеству и степени выраженности борозд можно судить о гестационном возрасте ребенка.
Сосудистые сплетения могут быть источником внутрижелудочковых кровоизлияний у доношенных детей, тогда на эхограммах видна их четкая асимметрия и локальные уплотнения, на месте которых затем образуются кисты.
Сильвиев водопровод и IV желудочек. Сильвиев водопровод (aquaeductus cerebri) представляет собой тонкий канал, соединяющий III и IV желудочки (см. рис. 1), редко видимый при УЗ исследовании в стандартных позициях. Его можно визуализировать на аксиальном срезе в виде двух эхогенных точек на фоне гипоэхогенных ножек мозга.
IV желудочек (ventriculus quartus) представляет собой небольшую полость ромбовидной формы. На эхограммах в строго сагиттальном срезе он выглядит малым анэхогенным треугольником посередине эхогенного медиального контура червя мозжечка (см. рис. 1). Передняя его граница отчетливо не видна из-за гипоэхогенности дорсальной части моста. Переднезадний размер IV желудочка в неонатальном периоде не превышает 4 мм.
Мозолистое тело. Мозолистое тело (corpus callosum) на сагиттальном срезе выглядит как тонкая горизонтальная дугообразная гипоэхогенная структура (рис. 2), ограниченная сверху и снизу тонкими эхогенными полосками, являющимися результатом отражения от околомозолистой борозды (сверху) и нижней поверхности мозолистого тела. Сразу под ним располагаются два листка прозрачной перегородки, ограничивающие ее полость. На фронтальном срезе мозолистое тело выглядит тонкой узкой гипоэхогенной полоской, образующей крышу боковых желудочков.
Полость прозрачной перегородки и полость Верге. Эти полости расположены непосредственно под мозолистым телом между листками прозрачной перегородки (septum pellucidum) и ограничены глией, а не эпендимой; они содержат жидкость, но не соединяются ни с желудочковой системой, ни с субарахноидальным пространством. Полость прозрачной перегородки (cavum cepti pellucidi) находится кпереди от свода мозга между передними рогами боковых желудочков, полость Верге расположена под валиком мозолистого тела между телами боковых желудочков. Иногда в норме в листках прозрачной перегородки визуализируются точки и короткие линейные сигналы, происходящие от субэпендимальных срединных вен. На корональном срезе полость прозрачной перегородки выглядит как квадратное, треугольное или трапециевидное анэхогенное пространство с основанием под мозолистым телом. Ширина полости прозрачной перегородки не превышает 10-12 мм и у недоношенных детей шире, чем у доношенных. Полость Верге, как правило, уже полости прозрачной перегородки и у доношенных детей обнаруживается редко. Указанные полости начинают облитерироваться после 6 мес гестации в дорсовентральном направлении, но точных сроков их закрытия нет, и они обе могут обнаруживаться у зрелого ребенка в возрасте 2-3 мес.
Базальная (c. suprasellar) цистерна включает в себя межножковую, c. interpeduncularis (между ножками мозга) и хиазматическую, c. chiasmatis (между перекрестом зрительных нервов и лобными долями) цистерны. Цистерна перекреста выглядит пятиугольной эхоплотной зоной, углы которой соответствуют артериям Виллизиева круга.
Ножки мозга (pedunculus cerebri), мост (pons) и продолговатый мозг (medulla oblongata) расположены продольно кпереди от мозжечка и выглядят гипоэхогенными структурами.
Паренхима. В норме отмечается различие эхогенности между корой мозга и подлежащим белым веществом. Белое вещество чуть более эхогенно, возможно, из-за относительно большего количества сосудов. В норме толщина коры не превышает нескольких миллиметров.
Стандартные эхоэнцефалографические срезы
Рис. 4. Плоскости коронального сканирования (1-6).
Мутации без наследства. Бывает ли мозг без извилин?
Что поверхность мозга должна быть покрыта извилинами, знают все. Изображения нормального мозга есть даже в школьных учебниках. Однако встречаются ситуации, когда извилин значительно меньше, чем должно быть, и они сглажены. Бывает и так, что извилин нет вовсе. В таких случаях головной мозг «гладкий», в этом его основное внешнее отличие от нормального. По факту же гладкий мозг — это серьезное нарушение, являющееся неизлечимым. О том, почему возможно появление на свет людей с головным мозгом, лишенным извилин, и к чему это приводит, АиФ.ru рассказала Ольга Пылаева, врач-невролог, эпилептолог Института детской неврологии и эпилепсии им. Свт. Луки.
Гладкая структура
Данная аномалия на языке медицинских терминов называется лиссэнцефалией. Под этим понятием скрывается широкая группа нарушений и сбоев в развитии головного мозга. Речь может идти как о частичном отсутствии извилин или их некачественном развитии, так и о полном их отсутствии (агирия). Более легкой разновидностью также является пахигирия, которая отличается наличием нескольких плоских широких извилин и неглубоких борозд. Такая особенность строения рассматривается как порок развития мозга. Патология формируется внутриутробно на ранних сроках беременности, а точнее, на 9−13 неделе, и вызвана нарушением нормального передвижения (миграции) нейронов. При этом изменения необратимы. Лиссэнцефалия может быть как самостоятельной аномалией развития, так и дополнением к ряду врожденных синдромов (Миллера-Дикера, Норман-Робертс и т. д.).
Причины
Основными причинами лиссэнцефалии являются мутации в одном из нескольких генов. Основные гены, мутации в которых вызывают лиссэнцефалию, известны под названиями LIS1, DCX (doublecortin), RELN (рилин, локализован в 7 хромосоме) и ARX (ген локализован на половой Х-хромосоме, в этом случае кроме сглаженности борозд на МРТ выявляется врожденное отсутствие мозолистого тела, основной структуры, обеспечивающей обмен информацией между двумя полушариями). Эти поломки обычно отсутствуют в генах родителей и впервые появляются у плода в процессе беременности (так называемые «мутации de novo»). При этом родители могут быть совершенно здоровы.
Возникновение мутаций в генах во время беременности является случайным событием, которое при этом может быть спровоцировано целым рядом факторов, включая различные отравляющие воздействия и прием лекарств, токсичных для плода. Также причиной поломки генов могут быть инфекции или нарушение кровообращения плода в начале беременности. Однако спрогнозировать, что будет именно такой результат, невозможно. В большинстве случаев причина возникновения мутации остается неизвестной. В этом случае следующие дети у тех же родителей с высокой вероятностью будут лишены такой мутации.
Реже бывает так, что один из родителей или оба изначально имеют такую (очень редкую) поломку гена. При этом внешне она практически не проявляется и становится «сюрпризом» после рождения больного ребенка. В этих случаях риск появления в семье и других детей с таким редким генетическим заболеванием достаточно высок.
Как распознать
В некоторых случаях порок развития мозга можно распознать еще внутриутробно, при проведении УЗИ плода. Во время беременности оценивать формирование борозд и извилин у плода можно не ранее 20 недели, так как на ранних сроках беременности гладкий мозг — это нормальная стадия развития плода. Также проблему можно заметить при проведении УЗИ мозга (нейросонографии) в первые месяцы жизни ребенка. При рождении на проблемы с мозгом у ребенка могут указать пороки развития пальцев, особенности строения головы и лица, порок сердца и др.
Но бывает и так, что при благоприятном течении беременности и родов ребенок с такой патологией расценивается как здоровый и первое время не вызывает беспокойства у родителей. Однако постепенно становится заметной задержка развития, что часто и является первой жалобой. При осмотре в большинстве случаев врач обращает внимание на уменьшенный размер головы.
В дальнейшем присоединяются эпилептические приступы, иногда родители обращаются к врачу уже в связи с их появлением. Начало эпилептических приступов отмечается, когда ребенок достигает возраста 3−5 месяцев, реже они начинаются после 9 месяцев. Первым типом приступов бывают эпилептические спазмы. Купируются такие приступы специальными препаратами. Чтобы их правильно подобрать для ребенка, следует провести целый ряд исследований: ЭЭГ, видео-ЭЭГ мониторинг со сном.
Лечение
Лечения нет. Можно лишь обеспечить качественный уход за ребенком. Он включает в себя стандартный бытовой уход, необходимые меры реабилитации, предложенные врачом, подбор оптимальных препаратов для снятия приступов эпилепсии. К сожалению, при данной аномалии мозга прогноз неблагоприятный. В зависимости от лежащих в основе генетических нарушений дети с таким диагнозом погибают в младенческом возрасте (например, это дети с синдромом Миллера-Дикера, который вызван делецией генов на хромосоме 17 или мутацией в гене LIS1). В других случаях при качественном уходе и медицинском обслуживании продолжительность жизни увеличивается. Однако в большинстве случаев пациенты являются глубокими инвалидами. Так, например, они могут прожить до 10 лет, но быть при этом по развитию на уровне ребенка в возрасте 4−6 месяцев.
В некоторых случаях тяжесть заболевания и продолжительность жизни зависят от пола ребенка. При лиссэнцефалии, вызванной мутацией в гене ARX, который связан с половой женской хромосомой (Х-хромосома), мальчики погибают в младенческом возрасте от выраженного поражения головного мозга и внутренних органов. У девочек в такой ситуации заболевание протекает легче и продолжительность жизни больше.
Профилактика
Единственное, что может каким-то образом предотвратить развитие проблемы, — это тщательное планирование беременности. Будущим родителям обязательно стоит пройти консультацию генетика, чтобы исключить риск мутаций. Также стоит сдать анализы на TORCH-инфекции.
При появлении в семье ребенка с лиссэнцефалией генетическое обследование при планировании дальнейших детей необходимо, так как с первых описаний заболевания известны случаи его выявления у нескольких детей в одной семье. В этих случаях особенно важно провести генетические исследования у больного ребенка. Какие именно, подскажет врач-генетик. После всех исследований надо будет пройти консультацию с врачом и решить вопрос о безопасном планировании потомства.
У кого мозг без извилин
ФГБОУ ВО «Северный федеральный университет им. М.В. Ломоносова», Архангельск, Россия
ФГБОУ ВО «Северный федеральный университет им. М.В. Ломоносова», Архангельск, Россия
ФГБОУ ВО «Северный федеральный университет им. М.В. Ломоносова», Архангельск, Россия
ФГБОУ ВО «Северный федеральный университет им. М.В. Ломоносова», Архангельск, Россия
НИИ кардиологии СО РАМН, Томск
Старение головного мозга человека: морфофункциональные аспекты
Журнал: Журнал неврологии и психиатрии им. С.С. Корсакова. Спецвыпуски. 2017;117(1-2): 3-7
Грибанов А. В., Джос Ю. С., Дерябина И. Н., Депутат И. С., Емельянова Т. В. Старение головного мозга человека: морфофункциональные аспекты. Журнал неврологии и психиатрии им. С.С. Корсакова. Спецвыпуски. 2017;117(1-2):3-7.
Gribanov A V, Dzhos Yu S, Deryabina I N, Deputat I S, Emel’ianova T V. An aging brain: morphofunctional aspects. Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2017;117(1-2):3-7.
https://doi.org/10.17116/jnevro2017117123-7
ФГБОУ ВО «Северный федеральный университет им. М.В. Ломоносова», Архангельск, Россия
Представлен обзор основных данных в рассматриваемой области, которые имеют значение для понимания патологии, развивающейся в позднем возрасте. Обращено внимание на особенности атрофических процессов и их выраженность в разных структурах мозга, в том числе в аспекте снижения когнитивных функций. Обсуждается также сопряженность структурных изменений в ткани головного мозга с изменениями нейрохимических и биоэлектрических процессов в ЦНС.
ФГБОУ ВО «Северный федеральный университет им. М.В. Ломоносова», Архангельск, Россия
ФГБОУ ВО «Северный федеральный университет им. М.В. Ломоносова», Архангельск, Россия
ФГБОУ ВО «Северный федеральный университет им. М.В. Ломоносова», Архангельск, Россия
ФГБОУ ВО «Северный федеральный университет им. М.В. Ломоносова», Архангельск, Россия
НИИ кардиологии СО РАМН, Томск
Известно, что возрастные изменения проявляются во всех органах и системах организма человека. При этом особое значение имеют процессы, происходящие в период старения нервной системы, чему посвящен настоящий обзор, в котором обобщены основные факты в этой области.
Старение центральной нервной системы (ЦНС) сопровождается выраженными в различной степени атрофическими процессами. Масса головного мозга медленно, но неуклонно уменьшается. Кора больших полушарий, а в последующем, и мозжечка, становится тоньше. По данным В.В. Фролькис, масса мозга человека в возрасте от 60 до 75 лет снижается на 6%, причем неравномерно в разных отделах. Кора больших полушарий уменьшается на 4%, наибольшие изменения (на 12—15%) происходят в лобной доле. Отмечены гендерные различия степени атрофии мозга при старении. Масса головного мозга женщин примерно на 110—115 г меньше, чем у мужчин. Между 40 и 90 годами масса мозга уменьшается у мужчин на 2,85 г в год, а у женщин — на 2,92 г [1]. Твердая мозговая оболочка становится толще, склерозируется, срастается с костями черепа. Мягкая мозговая оболочка также заметно утолщается, извилины истончаются, борозды расширяются и углубляются. Паутинная оболочка прогрессирующе гиперплазируется и склерозируется с возрастом. По данным H. Brody [2] и H. Chugani и соавт. [3], и масса мозга снижается на 6—7% к 80 годам, мозжечок теряет с возрастом до 25% клеток Пуркинье, ядра таламуса — до 18%; наиболее часто изменения проявляются в префронтальной и медиально-височной областях. По данным E. Kensinger и соавт. [4], в префронтальной области наблюдается атрофия и белого и серого вещества. Уменьшение объема серого вещества обусловлено снижением количества нейронов ввиду их дегенерации. В белом веществе отмечаются аксональные патологические изменения и замедленная нейротрансмиссия. При этом R. Cabeza и соавт. [5] установили, что уменьшение межполушарной асимметрии, наблюдаемое у пожилых людей, наиболее выражено в префронтальной коре. До сих пор остается неясным, является ли билатеральное выравнивание отражением компенсаторной активизации одного из полушарий или же это результат патологических изменений.
Еще одной областью головного мозга, где возрастные изменения наиболее выражены, является гиппокамп [6]. Учитывая роль гиппокампа в формировании памяти, становится понятно, что функциональные и структурные изменения в этой зоне при старении обусловливают трудности запоминания контекста, в котором была получена информация [7, 8].
Таким образом, большинство исследователей мозга человека указывают на преимущественную потерю нейронов в коре, гиппокампе и мозжечке. В большинстве подкорковых образований клеточный состав остается неизменным до старческого возраста [1]. При этом филогенетически более «новые» структуры мозга, связанные с познавательной функцией, в большей степени подвержены возрастной потере нейронов, чем филогенетически «старые» (ствол мозга).
В процессе старения сами нейроны и их отростки уменьшаются в размерах, в них накапливаются липофусцин и жировые вакуоли. Миелиновые волокна истончаются. При электронно-микроскопическом исследовании обнаруживается старческий хроматолиз нейронов, их склеротические изменения и превращение в «клетки-тени». Выявляются не только признаки повреждения и дистрофии нейронов (гомогенизация цитоплазмы, смещение и пикноз ядер, цитолиз, тигролиз) различной выраженности, но и признаки гипертрофии внутриклеточных структур, что указывает на адаптивные процессы в условиях возрастной дегенерации нейронов [9, 10]. В связи с гибелью нейронов возникает один из типичных морфологических признаков стареющего мозга — разрежение клеток. Пустоты в участках полного исчезновения нейронов содержат гранулярный базофильный материал и вакуоли, а также происходит их замещение глиальными элементами [11, 12].
При старении головного мозга в коре больших полушарий, главным образом в лобных долях, а также в гиппокампе и подкорковых узлах увеличивается число глиальных элементов и выявляются старческие (сенильные) бляшки. Они располагаются рядом с сосудами микроциркуляторного русла коры и представляют собой скопления аргирофильного бесструктурного материала, содержащие амилоид и окруженные переплетениями утолщенных аксонов и клетками макро- и микроглии, имеющими мало цитоплазмы [13, 14].
При старении уменьшается плотность синапсов. Однако утрата синапсов происходит не во всех отделах ЦНС в равной степени. Так, в лобной доле достоверно доказано уменьшение количества синапсов с возрастом, в то время как в височной возрастные изменения не наблюдаются. Изменения в состоянии синапсов отмечаются не только в коре, но и в подкорковых структурах. Например, возрастные нарушения пространственной памяти объясняются снижением специфичности, эффективности и пластичности синаптической передачи в гиппокампе. При старении уменьшается способность формирования новых синапсов. Редукция синаптической пластичности в старости может способствовать снижению памяти, ухудшению двигательной активности и развитию других нарушений. При этом ухудшаются межнейронные контакты в различных областях ЦНС, нейроны как бы подвергаются деафферентации, в связи с чем нарушается их ответная реакция на сигналы внешней среды, нервные и гормональные стимулы, т. е. повреждаются синаптические механизмы деятельности мозга [1].
По мере увеличения возраста существенно изменяется состояние медиаторных систем мозга. Одним из наиболее характерных феноменов старения является дегенерация дофаминергической системы мозга, что непосредственно связано с развитием в старческом возрасте таких заболеваний, как паркинсонизм. Нарушения деятельности холинергической медиаторной системы мозга играют одну из основных ролей в расстройствах памяти, восприятия и других познавательных процессов, возникающих при болезни Альцгеймера [15].
Старение сопровождается также изменением активности и содержания в ткани мозга человека энзимов, имеющих отношение к синтезу и разрушению тирозингидроксилазы, ДОФА-декарбоксилазы в черной субстанции, хвостатом ядре и скорлупе; холинацетилазы и ацетилхолинестеразы — в коре, стриатуме, гиппокампе и мозжечке, и следовательно, синтез ацетилхолина в этих структурах уменьшен. Напротив, в среднем мозге увеличивается содержание моноаминоксидазы. Нарушение обмена нейромедиаторов в дофаминергических нейронах головного мозга влечет за собой его снижение в базальных ганглиях, хвостатом ядре и скорлупе, что и вызывает нарушение двигательной активности. Уменьшение содержания серотонина и норадреналина, снижение содержания и скорости обмена дофамина в гипоталамусе связывают с развитием депрессии у лиц пожилого возраста [16].
Возрастное ухудшение кровоснабжения головного мозга по экстра- и интракраниальным сосудам сопровождается изменениями мелких сосудов: склерозом и гиалинозом стенок, сужением просвета. При старении снижается мозговой кровоток, нарушаются функции гематоэнцефалического барьера, уменьшается сопряжение между мозговым кровотоком и метаболизмом глюкозы в связи с использованием в качестве энергетического субстрата кетоновых тел, снижаются уровни тканевого дыхания и окислительного фосфорилирования, а также внутриклеточный рН в мозге, что характеризует изменения церебрального энергетического обмена на всех уровнях. Такие изменения при нормальном старении выражены относительно слабо, тем не менее они повышают чувствительность мозга к окислительному стрессу и другим повреждающим факторам [17—19].
Возрастные изменения сосудистых сплетений проявляются склерозом, образованием кист, кальцификацией, появлением псаммозных телец. Процессы обызвествления в них прогрессируют с возрастом: при компьютерной томографии они выявляются у 1 из 3 — 50-летних, у 3 из 4 — 60-летних и у 5 из 6 — 80-летних пациентов [11].
В процессе старения имеет место постепенное снижение высших психических функций — восприятия, внимания, памяти, мышления. Снижаются скорость обработки информации, объем оперативной памяти, способность к обучению и запоминанию новой информации [20, 21].
Для пожилых людей характерны эмоциональная неустойчивость, снижение умственной работоспособности, повышение порога безусловных рефлекторных реакций, трудности выработки условных рефлексов, а также более медленное их угасание по сравнению с молодым возрастом [22, 23].
По мере того, как человек становится старше, процесс восприятия новой информации и ее кодирования для последующего хранения требует все большего времени, что связано со сниженной эффективностью нервной передачи и сенсорным дефицитом, который ограничивает способность человека быстро и точно воспринимать информацию, предъявляемую для запоминания [24, 25]. У пожилых людей, кроме того, снижается способность извлекать хранящиеся в памяти сведения. Отчасти это обусловлено тем, что им сложнее дифференцировать необходимый фрагмент информации от обильных запасов сведений и знаний, накопленных в течение долгих лет жизни. Этот процесс отграничения (дифференцировки) может быть особенно трудным в случае, когда новая информация сходна по содержанию с давно усвоенной. Вследствие этого пожилые люди демонстрируют гораздо худшие показатели по сравнению с молодыми, в тестах на свободное вспоминание, когда их просят вспомнить заученную информацию, давая при этом минимум подсказок. Однако эта разница сводится к минимуму, когда пожилым испытуемым дается достаточное количество подсказок и ориентиров, чтобы сузить фокус поиска в памяти нужной информации, или когда их просят выбрать правильный ответ из небольшого числа вариантов [26—28].
Считается, что люди пожилого возраста обладают лучшей памятью на события, происшедшие в давнем прошлом, чем на недавние события. Это в основном связано с тем, что давние события либо имеют для человека особое личное значение, либо настолько особенны по содержанию, что не могли в течение жизни быть «стерты» из памяти более поздними событиями [29, 30]. Пожилые люди в течение жизни многократно обращаются к этим воспоминаниям, что повышает их доступность для извлечения из памяти, по сравнению с ежедневными событиями, значительная часть которых со временем забывается. Следует иметь в виду, что гораздо труднее выявить ошибки испытуемых в воспроизведении давних событий по сравнению с событиями текущими, когда ошибки припоминания оказываются очевидными. Так, кратковременная память значительно ослабевает с возрастом и часто оказывается нарушенной у пожилых людей. Возрастные различия долговременной памяти гораздо менее выражены и, как считается, могут быть следствием использования неэффективных стратегий кодирования или дефицита функции воспроизведения [31, 32]. Семантическая память в позднем возрасте не нарушается. Прогрессирующее снижение памяти у некоторых людей отмечается уже между 50—60 годами, что, вероятно, является результатом дегенеративных изменений в нейронах, отложения липофусцина, образования сенильных бляшек в ткани мозга [27].
Речь при старении сохраняется относительно хорошо [3]. Пожилые люди 60—70 лет используют в своей речи более разнообразные грамматические формы по сравнению с более старшей возрастной группой. Беглость речи у пожилых не отличается от лиц более молодого возраста. Однако имеются изменения в процессах понимания чужой речи в связи с сенсорным дефицитом и замедлением скорости обработки информации. В отношении письменной речи также наблюдаются определенные изменения с возрастом. Понимание и восприятие замедляются, пожилым людям становится труднее уловить смысл прочитанного.
Другой особенностью нейродинамических нарушений является уменьшение способности концентрировать внимание в течение длительного времени, поэтому пожилые люди часто отвлекаются на посторонние стимулы при выполнении тех или иных заданий, особенно это выражено, когда необходимо запомнить информацию на фоне «шума» [33]. Им также трудно работать с несколькими источниками информации. Последнее может быть связано с уменьшением способности переключать внимание, т. е. с определенной интеллектуальной ригидностью.
В связи с морфологическими изменениями головного мозга биоэлектрическая активность его также медленно и прогрессирующе изменяется. Начиная с возраста 50 лет наблюдается перестройка спектра ритмов ЭЭГ, выражающаяся в снижении амплитуды и относительного количества альфа-ритма и тета-волн и в нарастании мощности бета-ритма [34, 35]. Что касается медленноволновой активности, то здесь полученные результаты противоречивы. По данным одних исследований [36, 37], имеет место возрастание мощности медленных ритмов и реже выявлялось [38—40] отсутствие изменений и снижение мощности медленных ритмов. Ряд авторов отмечают, что доминирующая частота после 60—70 лет имеет тенденцию к снижению, а по данным визуального анализа ЭЭГ преобладают тета- и дельта-волны. Считается, что замедление ЭЭГ связано ишемией, которая приводит к прогрессирующему увеличению количества пограничных с нормой и патологически измененных ЭЭГ [41]. Есть данные, что существенные отклонения фоновой ЭЭГ у лиц после 70 лет могут обусловливаться нарушениями функции нормальной регуляции сна и бодрствования. К 90—100 годам продолжает снижаться частота доминантного ритма, увеличивается представленность медленной активности, появляется ее асимметрия в височных отведениях. Количественный анализ показывает снижение мощности доминантного ритма и уменьшение его различий по разным зонам по сравнению с 60-летними здоровыми. Тета-ритм связан с памятью и эмоциональной регуляцией [42, 43]. Поскольку нарушения памяти являются одним из наиболее значимых проявлений старения головного мозга, во многом этим объясняется снижение мощности тета-ритма [44, 45]. Также отмечено снижение мощности альфа-ритма. Альфа-1-ритм связан с вниманием и трудностью выполняемого задания, тогда как альфа-2 является нейрофизиологическим коррелятом сложной семантической памяти [46]. Одновременно снижается реактивность альфа-ритма на активирующие нагрузки, а мощность бета-активности при функциональных нагрузках возрастает [47]. Н.В. Вольф и А.А. Глухих [34] обнаружили в своих исследованиях увеличение мощности высокочастотных бета-2 и гамма-ритмов во всех отведениях по сравнению с группой молодого возраста, причем эти различия были наиболее выражены во фронтальных отделах полушарий. У пожилых наблюдается также снижение возможности усвоения навязанных ритмов, диапазон усвоения ритма сужен и сдвигается в сторону низких частот.
Наблюдается также устойчивое увеличение латентности волны Р300 вызванных потенциалов с возрастом (латентность Р300 удлиняется на 1,25 мс в год, а амплитуда уменьшается со скоростью 0,09 мкВ в год) и уменьшение амплитуды зрительных вызванных потенциалов. При исследовании слуховых вызванных потенциалов было отмечено увеличение латентности N1 и P2, а их амплитуды меняются в зависимости от вида стимула: амплитуда N1 увеличивается в ответ на речевой стимул по сравнению с неречевым [48]. Амплитуда P2, по данным J. Lister и соавт. [49], меньше у людей пожилого возраста в сравнении с более молодыми из-за снижения активности процессов торможения. Однако K. Rufener и соавт. [48] в своем исследовании не выявили какой-либо значимой модуляции P2 у пожилых по сравнению с молодыми. С возрастом происходит падение скорости распространения возбуждения по нервам, замедляется синаптическое проведение [50, 51].
По данным В.Ф. Фокина и соавт. [52, 53], качественный анализ характера изменений при старении может быть представлен в отношении двух параметров: усредненного уровня постоянных потенциалов (УПП) и межполушарной разности в височных отведениях. При этом, возможно, картина церебрального энергообмена будет меняться в зависимости от биологического возраста, социального и психологического статуса, региона проживания и других факторов.
Имеются данные, что в лобных областях, где преобладают возрастные изменения — снижение кровотока и гипометаболизм глюкозы, регистрируется вторичное небольшое нарастание УПП, отражающее снижение церебрального рН. В пожилом возрасте отмечается определенное расхождение между динамикой метаболизма глюкозы и изменением КЩР: потребление глюкозы при старении снижается, но pH в мозговой ткани растет, что может быть обусловлено комплексом причин: снижением кровотока и энергетического обмена, деструктивными процессами [18].
Проводились исследования распределения УПП у пожилых северян, которые показали, что к характерным изменениям при старении у них относятся: низкие значения УПП в лобных отведениях, повышение значений в центральных и теменных отведениях, а также повышение индивидуальной вариабельности показателей межполушарных различий. Отмечено сглаживание межполушарной асимметрии у мужчин-северян в лобных, а у женщин-северянок — в центральных отведениях и правополушарное доминирование в центральных отведениях у мужчин [54].
Таким образом, в процессе старения наиболее значимые изменения наблюдаются в медиально-височной и префронтальной областях головного мозга, что в свою очередь приводит к снижению когнитивных функций: уменьшению скорости обработки информации, объема оперативной памяти, способности к обучению и запоминанию новой информации. Морфологические изменения головного мозга обусловливают перемены его функциональной активности, которая отражается на ЭЭГ, при анализе вызванных потенциалов, а также УПП.
Работа выполнена в рамках проектной части государственного задания в сфере научной деятельности Министерства образования и науки РФ на 2014—2016 гг., № 2025 Северному (Арктическому) федеральному университету им. М.В. Ломоносова.