учение о неравновесных открытых нелинейных системах называется

Основные принципы синергетики

Оглавление
Введение
1. Терминология
2. Предмет синергетики
3. Основные понятия
4. Ключевые положения синергетики по Герману Хакену
5. Философия синергетики
6. Школы синергетики
7. Заслуги синергетики и её заблуждения
8. Приложения синергетики
9. Синергетика естественнонаучных систем

Введение
Определение термина «синергетика», близкое к современному пониманию, ввёл немецкий физик-теоретик Герман Хакен в 1977 году в своей книге «Синергетика». Синергетика возникла в конце XX столетия и в настоящее время стала весьма популярной наукой. Её принципы и понятия проникли в научные направления широкого спектра: в биологию и физику, в историю и экономику [1]. Становление синергетической парадигмы в современном естествознании по всем критериям может быть оценено как становление новой картины мира. В настоящее время уже предприняты попытки создания универсальной концептуальной модели мирового процесса самоорганизации.
Одно из открытий, сыгравшее большую роль в создании синергетики, сделал в 1900 году французский физик Анри Бенар. Он нагревал снизу жидкое масло. Нижние слои, более горячие, поднимались вверх. Однако вязкость масла создавала им препятствие, и при небольшой разности температур верхнего и нижнего слоёв теплообмен обеспечивала только теплопроводность. Но когда различие температур достигло критического значения, появился конвективный поток. Он имел вид ячеек, напоминающих пчелиные соты, внутри которых жидкость стремилась вверх, а по краям опускалась вниз. Тьма молекул вела себя согласованно!

2. Предмет и методы синергетики
Область исследований синергетики чётко не определена и вряд ли может быть ограничена, так как её интересы распространяются на все отрасли естествознания. Общим признаком является рассмотрение динамики любых необратимых процессов и возникновения принципиальных новаций.
Математический аппарат синергетики скомбинирован из разных отраслей теоретической физики: нелинейной неравновесной термодинамики, теории катастроф, теории групп, тензорного анализа, дифференциальной топологии, неравновесной статистической физики.

3. Основные понятия
• Равновесные и неравновесные процессы
В равновесном состоянии для системы возможен лишь один вариант развития, предполагающий, что состояние системы в момент времени Tn обусловлено её состоянием в момент времени Tn-1 и, в свою очередь, обусловливает состояние Tn+1
Если равновесие системы нарушено, переход системы из состояния, соответствующего моменту Tn, в состояние, соответствующее Tn+1, рассматривается уже не как результат однозначной причинно-следственной связи, а как итог пересечения различных тенденций, которые зависят от исходного состояния системы и от случайных факторов и флуктуаций. В рамках анализа неравновесных систем именно случайные флуктуации оказываются одним из решающих факторов развития [4].
• Точка бифуркации. Момент достижения порога устойчивости называется точкой бифуркации (англ. fork – вилка). Это означает, что система может иметь несколько устойчивых стационарных состояний. В точке бифуркации происходит резкая смена характера процесса, смена пространственно-временной организации системы, её качественное изменение.
Точка бифуркации выступает одновременно и в качестве точки максимальной чувствительности системы как ко внешним, так и ко внутренним импульсам. Вблизи бифуркационной точки сильно неравновесная система оказывается особо чувствительной и к незначительным флуктуациям того или иного параметра процесса.
• Усиления флуктуации. В случае неравновесных процессов имеет место феномен так называемого «усиления флуктуации». В российской школе синергетических исследований данный феномен получает название «разрастания малого». Полёт мухи в Кембридже может привести к общему изменению климата в Индии. Синергетика постулирует фундаментальный статус в этом процессе феномена случайности: макроскопическое управление не в состоянии предсказать, по какой траектории пойдёт эволюция системы. Не помогает и обращение к микроскопическому описанию. Перед нами – случайные явления, аналогичные бросанию игральной кости».
• Аттрактор. Среди возможных ветвей эволюции системы далеко не все являются вероятными, у неё есть «влечения» по отношению к некоторым состояниям – аттракторам. Аттрактор определяется как состояние, к которому тяготеет система. Это устойчивый фокус, к которому сходятся все траектории динамики систем – своего рода «стабильное состояние порядка».
• Порядок и беспорядок оказываются тесно связанными – один включает в себя другой. Сегодня мы знаем, что увеличение энтропии не сводится к увеличению беспорядка, ибо порядок и беспорядок возникают и существуют одновременно.
• Двойственная природа хаоса. «В процессах самоорганизации открытых нелинейных систем явным образом обнаруживается … двойственная природа хаоса. Он то конструктивен, то разрушителен. Хаос выступает как двуликий Янус». Порядок возникает благодаря хаосу и из него, хаос лежит в основе выхода на одну из тенденций самоструктурирования сложной системы.

4. Ключевые положения синергетики по Герману Хакену
1. Исследуемые системы состоят из нескольких или многих одинаковых или разнородных частей, которые находятся во взаимодействии друг с другом.
2. Эти системы являются нелинейными.
3. При рассмотрении физических, химических и биологических систем речь идёт об открытых системах, далёких от теплового равновесия.
4. Эти системы подвержены внутренним и внешним колебаниям.
5. Системы могут стать нестабильными.
6. Происходят качественные изменения.
7. В этих системах обнаруживаются эмерджентные новые качества.
8. Возникают пространственные, временные, пространственно-временные или функциональные структуры.
9. Структуры могут быть упорядоченными или хаотическими.
10. Во многих случаях возможна математизация.

6. Школы синергетики
Существуют несколько школ, в рамках которых развивается синергетический подход.
1. Школа нелинейной оптики, квантовой механики и статистической физики Германа Хакена, с 1960 года профессора Института теоретической физики в Штутгарте. В 1973 году он объединил большую группу учёных вокруг шпрингеровской серии книг по синергетике, в рамках которой к настоящему времени увидели свет 69 томов с широким спектром теоретических, прикладных и научно-популярных работ, основанных на методологии синергетики: от физики твёрдого тела и лазерной техники и до биофизики и проблем искусственного интеллекта.
2. Физико-химическая и математико-физическая Брюссельская школа Ильи Пригожина, в русле которой формулировались первые теоремы (1947 г.), разрабатывалась математическая теория поведения диссипативных структур (термин Пригожина), раскрывались исторические предпосылки и провозглашались мировоззренческие основания теории самоорганизации, как парадигмы универсального эволюционизма. Эта школа, основные представители которой работают теперь в США, не пользуется термином «синергетика», а предпочитает называть разработанную ими методологию «теорией диссипативных структур» или просто «неравновесной термодинамикой», подчёркивая преемственность своей школы пионерским работам Ларса Онзагера в области необратимых химических реакций (1931 г.).

7. Заслуги синергетики и её заблуждения
Главной заслугой синергетики является открытие ею процессов самоорганизации. Безусловно, это шаг вперёд в нашем познании мира. В дальнейшем синергетика была распространена практически на все уровни иерархии Вселенной. Вместе с тем анализ показывает, что самоорганизация – это не кооперация под воздействием случайных факторов в состоянии неустойчивости, а процессы, причины которых заложены в природе. Эти процессы происходят на всех уровнях иерархии Вселенной и обеспечиваются всеми действующими в ней законами и силами.
Одно из заблуждений многих синергетиков – случайность играет главенствующую роль в эволюционном процессе. На самом же деле, от бифуркации до очередной бифуркации главенствует детерминистическое описание», а путь аттрактора предопределён.

8. Приложения синергетики
• Теория динамического хаоса исследует сверхсложную, скрытую упорядоченность поведения наблюдаемой системы (напр. явление турбулентности);
• Теория фракталов занимается изучением сложных самоподобных структур, часто возникающих в результате самоорганизации. Сам процесс самоорганизации также может быть фрактальным.
• Теория катастроф исследует поведение самоорганизующихся систем в терминах бифуркация, аттрактор, неустойчивость.
• Лингвистическая синергетика и прогностика.
• Семантическая синергетика.
К социальным наукам синергетический подход, в целом, неправомерен.

9. Синергетика естественнонаучных систем
Виды открытых нелинейных систем разных уровней организации: динамически стабильные, адаптивные, эволюционирующие системы.
1. Необходимые условия развития систем: неравновесность, открытость.
2. Свойства систем в неравновесном состоянии:
— системы начинают воспринимать те факторы воздействия извне, которые они бы не восприняли в более равновесном состоянии;
— независимое поведение элементов трансформируется в корпоративное поведение.
— идёт процесс накопление флуктуаций;
— начинают действовать бифуркационные механизмы.
3. Характерные признаки развивающихся систем:
спонтанное образование новых микроскопических образований, изменения на макроскопическом уровне, возникновение новых свойств системы, преобладание на определённом этапе ПОС над ООС, этапы самоорганизации и фиксации новых качеств системы.
4. Объединение нелинейных динамических систем есть система другой организацией или иного уровня.
5. Математическое описание развивающихся систем. При переходе от неупорядоченного состояния к состоянию порядка все развивающиеся системы могут быть описаны одним и тем же обобщённым математическим аппаратом синергетики.

Источник

учение о неравновесных открытых нелинейных системах называется. Смотреть фото учение о неравновесных открытых нелинейных системах называется. Смотреть картинку учение о неравновесных открытых нелинейных системах называется. Картинка про учение о неравновесных открытых нелинейных системах называется. Фото учение о неравновесных открытых нелинейных системах называется

учение о неравновесных открытых нелинейных системах называется. Смотреть фото учение о неравновесных открытых нелинейных системах называется. Смотреть картинку учение о неравновесных открытых нелинейных системах называется. Картинка про учение о неравновесных открытых нелинейных системах называется. Фото учение о неравновесных открытых нелинейных системах называется

учение о неравновесных открытых нелинейных системах называется. Смотреть фото учение о неравновесных открытых нелинейных системах называется. Смотреть картинку учение о неравновесных открытых нелинейных системах называется. Картинка про учение о неравновесных открытых нелинейных системах называется. Фото учение о неравновесных открытых нелинейных системах называется

учение о неравновесных открытых нелинейных системах называется. Смотреть фото учение о неравновесных открытых нелинейных системах называется. Смотреть картинку учение о неравновесных открытых нелинейных системах называется. Картинка про учение о неравновесных открытых нелинейных системах называется. Фото учение о неравновесных открытых нелинейных системах называется

учение о неравновесных открытых нелинейных системах называется. Смотреть фото учение о неравновесных открытых нелинейных системах называется. Смотреть картинку учение о неравновесных открытых нелинейных системах называется. Картинка про учение о неравновесных открытых нелинейных системах называется. Фото учение о неравновесных открытых нелинейных системах называется

учение о неравновесных открытых нелинейных системах называется. Смотреть фото учение о неравновесных открытых нелинейных системах называется. Смотреть картинку учение о неравновесных открытых нелинейных системах называется. Картинка про учение о неравновесных открытых нелинейных системах называется. Фото учение о неравновесных открытых нелинейных системах называется

учение о неравновесных открытых нелинейных системах называется. Смотреть фото учение о неравновесных открытых нелинейных системах называется. Смотреть картинку учение о неравновесных открытых нелинейных системах называется. Картинка про учение о неравновесных открытых нелинейных системах называется. Фото учение о неравновесных открытых нелинейных системах называется

учение о неравновесных открытых нелинейных системах называется. Смотреть фото учение о неравновесных открытых нелинейных системах называется. Смотреть картинку учение о неравновесных открытых нелинейных системах называется. Картинка про учение о неравновесных открытых нелинейных системах называется. Фото учение о неравновесных открытых нелинейных системах называется

СИНЕРГЕТИКА, ЕЁ ОСНОВНЫЕ ПОЛОЖЕНИЯ

Синергетика – новое мировидение.

Открытие нового мира необратимости, внутренней случайности и сложности (И. Пригожин, 1986).

Что такое синергетика?

Синергетика – междисциплинарное направление научных исследований, задачей которого является изучение природных явлений и процессов на основе принципов самоорганизации систем (состоящих из подсистем). «. наука, занимающаяся изучением процессов самоорганизации и возникновения, поддержания, устойчивости и распада структур самой различной природы. ».

Синергетика изначально заявлялась как междисциплинарный подход, так как принципы, управляющие процессами самоорганизации, одни и те же безотносительно природы систем.

Основное понятие синергетики – определение структуры как состояния, возникающего в результате поведения многоэлементной или многофакторной среды, не демонстрирующей стремления к усреднению термодинамического типа.

В отдельных случаях образование структур имеет волновой характер и иногда называется автоволновыми процессами (по аналогии с автоколебаниями).

II. Области исследований

Область исследований синергетики до сих пор до конца не определена, так как предмет её интересов лежит среди различных дисциплин, а основные методы синергетики взяты из нелинейной неравновесной термодинамики.

Постепенно предмет синергетики распределился между различными направлениями:

теория динамического хаоса исследует сверхсложную упорядоченность, напр. явление турбулентности;

теория детерминированного хаоса исследует хаотические явления, возникающие в результате детерминированных процессов (в отсутствие случайных шумов);

теория фракталов занимается изучением сложных самоподобных структур, часто возникающих в результате самоорганизации, процесс самоорганизации также может быть фрактальным;

теория катастроф исследует поведение самоорганизующихся систем в терминах бифуркация, аттрактор, неустойчивость;

лингвистическая синергетика и прогностика.

Синергетика основывается на следующих идеях и выводах:

1. Системности или целостности мира и научного знания о нем, общности закономерностей развития объектов всех уровней материальной и духовной организации.

2. Нелинейности (т.е. многовариантности и необратимости).

Нелинейность – одно из центральных понятий в синергетике. Нелинейность в математическом плане отражает определенный вид математических уравнений, содержащих искомые величины в степенях, больших 1, или коэффициенты, зависящие от свойств среды.

Нелинейные уравнения имеют несколько решений. Множеству решений нелинейного уравнения соответствует множество путей эволюции системы, описываемой этими уравнениями (нелинейной системы).

Нелинейность в мировоззренческом плане может быть развернута посредством идеи многовариантности путей эволюции, идеи выбора из альтернатив и вытекающей отсюда идеи необратимости эволюции.

3. Глубиной взаимосвязи хаоса и порядка (случайности и необходимости). С точки зрения синергетики, хаос, беспорядок, случайности необходимы для рождения нового, а, следовательно, необходимы для эволюции. Синергетика рассматривает случайность и хаос как необходимые составные части этого мира, в то время как раньше они рассматривались как нечто непознанное. Природа содержит в себе случайность и необратимость как существенные моменты, а «это ведет к новой картине материи. Она не рассматривается больше в качестве пассивной, как это имеет место в механистической картине мира.» В механистической науке непостигаемое было тождественно неизменяемому, но хотя человеку не дано полностью постичь природу, она все же обладает возможностью спонтанной деятельности.

4. Открытости систем и мира в целом.

5. Новое понимание времени.

III. Синергетический подход в современном познании, основные принципы

Наука имеет дело с системами разных уровней организации, связь между ними осуществляется через хаос

Когда системы объединяются, целое не равно сумме частей

Общее для всех систем: спонтанное образование, изменения на макроскопическом уровне, возникновение новых качеств, этап самоорганизации. При переходе от неупорядоченного состояния к состоянию порядка все системы ведут себя одинаково

Неравновесность в системе является источником появления новой организации (порядка)

Системы всегда открыты и обмениваются энергией с внешней средой

Процессы локальной упорядоченности совершаются за счет притока энергии извне

В сильно неравновесных условиях системы начинают воспринимать те факторы, которые они бы не восприняли в более равновесном состоянии

В неравновесных условиях независимость элементов уступает место корпоративному поведению

Вдали от равновесия согласованность поведения элементов возрастает. В равновесии молекула видит только своих соседей, вдали равновесия – видит всю систему целиком. Примеры: костная материя – коммуникация посредством сигналов, работа головного мозга.

В условиях, далеких от равновесия, в системах действуют бифуркационные механизмы – наличие точек раздвоения продолжения развития. Варианты развития системы практически не предсказуемы.

IV. Ключевые положения синергетики. Г.Хакен

«Исследуемые системы состоят из нескольких или многих одинаковых или разнородных частей, которые находятся во взаимодействии друг с другом.

Эти системы являются нелинейными.

При рассмотрении физических, химических и биологических систем речь идет об открытых системах, далеких от теплового равновесия.

Эти системы подвержены внутренним и внешним колебаниям.

Системы могут стать нестабильными.

Происходят качественные изменения.

В этих системах обнаруживаются эмерджентные (т.е. вновь возникшие) новые качества.

Возникают пространственные, временные, пространственно-временные или функциональные структуры.

Структуры могут быть упорядоченными или хаотичными.

Во многих случаях возможна математизация»**.

Хакен прежде всего подчеркивает, что части систем взаимодействуют друг с другом. Он выделяет истоки, которые приводят к образованию новых систем. Хаос есть хаос, он никак не может превратиться в порядок. Логика Хакена идет в другом направлении. Основополагающий системный фактор состоит не в хаотичности, а во взаимодействии, в динамике.

Динамика не чужда даже хаосу. А раз так, то вполне возможно, что в хаосе рождается порядок, упорядоченность. Это действительно имеет место. Многим упорядочение хаоса, его самоорганизация кажется чем-то диковинным. Им трудно понять, что хаос не лишен динамики, они абсолютизируют хаос, считают его деструктивным началом.

Важнейшим концептом синергетики является нелинейность. В синергетике основное внимание уделяется изучению нелинейных математических уравнений. Линейность абсолютизирует поступательность, безальтернативность, торжество постоянства. Нелинейность фиксирует непостоянство, многообразие, неустойчивость, отход от положений равновесия, случайности, точки ветвления процессов, бифуркации.

Точкой бифуркации называют состояние максимальной хаотичности неравновесного процесса (от лат. bifurcus – раздвоенный). Благодаря хаотичности дальнейшее развертывание неравновесного процесса имеет не один путь движения, а множество возможных путей из точки бифуркации

Имея дело с открытыми (имеющими источники и стоки энергии) нелинейными системами, синергетика утверждает, что мир возникает в результате самопроизвольных и самоорганизующихся механизмов. В их основе лежит единая симметрия форм в живой и неживой природе. Например, спирали Галактики и циклона подобны спирали раковины улитки, рогов животных.

Случайность оказывается необходимым элементом мира: порядок (закон) и беспорядок (хаос) включают в себя друг друга. Более того, случайность играет роль творческого начала в процессе самоорганизации. Чем дальше от состояния равновесия, тем быстрее растет число решений, состояний сложной системы.

Синергетика, как правило, имеет дело с открытыми системами, далекими от равновесия. Открытость системы означает наличие в ней источников и стоков, например, вещества, энергии и информации.

Чтобы система образовалась, необходим соответствующий динамический источник, который как раз и выступает организующим началом. Там, где наступает равновесие, самоорганизация прекращается.

Самоорганизующиеся системы подвержены колебаниям. Именно в колебаниях система движется к относительно устойчивым структурам. Нелинейные уравнения, как правило, описывают колебательные процессы

Речь идет о том, что, во-первых, именно необратимость играет конструктивную роль, во-вторых, следует переоткрыть понятие времени.

Есть основания предположить, что в связи с интенсивным развитием синергетики в науке происходит сейчас не меньшая, а скорее всего даже более глубокая и масштабная по своему характеру революция, чем научная революция, вызванная возникновением на рубеже нашего века теории относительности и квантовой механики.

Итак, синергетика явилась радикально новым способом видения мира. И в то же время она парадоксальным образом возвращает нас к тем идеям, которые имеют тысячелетнюю историю. Синергетика – и в этом ее своеобразие – не только синтезирует фрагменты обыденного и отчасти научного, дисциплинарно разбросанного знания, но даже связывает эпохи – древность с современностью, с новейшими достижениями науки, – а также принципиально различные, восточный и западный, способы мышления и мировосприятия.

Синергетика как мировоззрение несет в себе немалый гуманистический потенциал. Основной пафос синергетики состоит в том, чтобы попытаться описать сначала на качественном уровне посредством некоторых фундаментальных идей и образов, а затем, возможно, и посредством одного и того же математического языка взаимоподобные процессы развития в сложных системах физики, химии, биологии, географии, социологии.

В результате разработки синергетики переосмысливается и место человека в структуре познавательной и практической деятельности. Ученый не представляется более в виде некоего отстраненного от мира оракула-просветителя, который открывает вечные и неизменные законы действительности и на основе этого знания вырабатывает истинное на все времена нормы деятельности.

Познание мира есть, по выражению И.Пригожина, «диалог человека с природой», «искусство воплощать природу» и получать на поставленные вопросы ответы.

Синергетика стирает непреодолимые грани между физическими и химическими процессами, с одной стороны, и биологическими – с другой, ибо исследует общие механизмы самоорганизации тех и других. Нелинейные системы ведут себя как живые системы в том смысле, что их реакция на внешние воздействия зависит не только от величины этого воздействия, но и существенным, нелинейным образом от собственных свойств системы.

Каково место синергетики в ряду других наук? Синергетика изучает открытые (обменивающиеся веществом и энергией с внешним миром, иными словами, имеющие источники и стоки энергии) нелинейные (описывающиеся нелинейными уравнениями) системы.

В синергетике к настоящему времени сложилось уже несколько школ или течений. Эти школы окрашены в те тона, которые привносят их сторонники, идущие к осмыслению идей синергетики с позиции своей исходной дисциплинарной области, будь то математика, физика, химия, биология или даже обществознание.

В числе этих школ – брюссельская школа лауреата Нобелевской премии И. Пригожина, разрабатывающего теорию диссипативных структур (иное название синергетики).

Интенсивно работает также школа Г.Хакена, профессора Института синергетики и теоретической физики в Штутгарте.

Классические работы, в которых развивается математический аппарат для описания катастрофических синергетических процессов, принадлежит перу советского математика, академика В.И. Арнольда и французского математика Р.Тала.

Школа академика А.А. Самарского и члена-корреспондента АН СССР С.П. Курдюмова выдвинула ряд оригинальных идей для понимания механизмов возникновения и эволюции относительно устойчивых структур в нелинейных средах (системах). Широко известны также работы академика Н.Н. Моисеева, разработавшего идеи глобального эволюционизма в поведении человека и природы.

Такое разнообразие научных школ и идей свидетельствует о том, что синергетика представляет собой скорее парадигму, чем теорию. Под парадигмой в философии науки понимают определенную совокупность общепринятых в научном обществе идей и методов (образцов) научного исследования. Синергетику как новую парадигму можно предельно кратко охарактеризовать всего лишь тремя ключевыми идеями: нелинейность, самоорганизация и открытые системы. Синергетика важна в первую очередь как подход к пониманию развития открытых нелинейных систем, как особый стиль мышления, т.е. своей методологической и эвристической стороной.

1. Данилов Ю.А., Кадомцев Б.Б. Что такое синергетика? // Нелинейные волны. Самоорганизация. – М., Наука, 1983.

4. Интервью с профессором Г. Хакеном //Вопросы философии. 2000. № 3.

Источник

Учение о неравновесных открытых нелинейных системах называется

учение о неравновесных открытых нелинейных системах называется. Смотреть фото учение о неравновесных открытых нелинейных системах называется. Смотреть картинку учение о неравновесных открытых нелинейных системах называется. Картинка про учение о неравновесных открытых нелинейных системах называется. Фото учение о неравновесных открытых нелинейных системах называется

Синергетика. Наука синергетика.

Синергетика является междисциплинарным подходом, поскольку принципы, управляющие процессами самоорганизации, представляются одними и теми же безотносительно природы систем, и для их описания должен быть пригоден общий математический аппарат.

Синергетика. История синергетики. История современной синергетики.

Автором термина «синергетика», предложившим его впервые является американский архитектор и изобретатель Ричард Бакминстер Фуллер.

В течение своей жизни Ричард Фуллер задавался вопросом относительно того, есть ли у человечества шанс на долгосрочное и успешное выживание на планете Земля и если да, то каким образом. Считая себя заурядным индивидом без особых денежных средств или учёной степени, Ричард Фуллер решил посвятить свою жизнь этому вопросу, пытаясь выяснить, что личности вроде него могут сделать для улучшения положения человечества из того, что большие организации, правительства или частные предприятия не могут выполнить в силу своей природы.

На протяжении этого жизненного эксперимента Ричард Бакминстер Фуллер написал двадцать восемь книг, и стал автором таких терминов как «космический корабль «Земля»», «эфемеризация», и в том числе «синергетика».

Сэр Чарльз Скотт Шеррингтон, британский учёный в области физиологии и нейробиологии, лауреат Нобелевской премии по физиологии и медицине 1932 года, называл в рамках своих исследований синергетическим, или интегративным, согласованное воздействие нервной системы (спинного мозга) при управлении мышечными движениями.

Другой ученый, И. Забуский, занимавшийся исследованием сложных систем в ограниченности по отдельности как аналитического, так и численного подхода к решению нелинейных задач, в 1967 году, пришёл к выводу о необходимости применения единого «синергетического» подхода, понимая под этим «…совместное использование обычного анализа и численной машинной математики для получения решений разумно поставленных вопросов математического и физического содержания системы уравнений».

И лишь в 1977 году, определение термина «синергетика», близкое к современному его пониманию, дал Герман Хакен в своей книге «Синергетика».

Определение термина «синергетика», близкое к современному пониманию, ввёл Герман Хакен в 1977 году в своей книге «Синергетика».

С этого момента и принято отсчитывать развитие «синергетики» как науки.

Синергетика. Предмет синергетики.

Область исследований синергетики чётко не определена и вряд ли может быть ограничена какими-то рамками, так как её интересы распространяются на все отрасли естествознания. Общим признаком является рассмотрение динамики любых необратимых процессов и возникновения принципиальных новаций.

Математический аппарат синергетики, который кстати продолжает развиваться, скомбинирован из разных инновационных отраслей теоретической физики и математики: нелинейной неравновесной термодинамики, теории катастроф, теории групп, тензорного анализа, дифференциальной топологии, неравновесной статистической физики.

Синергетика. Школы синергетической науки.

В мире существуют несколько школ, в рамках которых активно развивается синергетический подход:

1.Школа нелинейной оптики, квантовой механики и статистической физики Германа Хакена, с 1960 года профессора Института теоретической физики в Штутгарте.

В 1973 году он объединил большую группу учёных вокруг шпрингеровской серии книг по синергетике, в рамках которой к настоящему времени увидели свет 69 томов с широким спектром теоретических, прикладных и научно-популярных работ, основанных на методологии синергетики: от физики твёрдого тела и лазерной техники и до биофизики и проблем искусственного интеллекта.

2.Физико-химическая и математико-физическая Брюссельская школа Ильи Пригожина, в русле которой формулировались первые теоремы, разрабатывалась математическая теория поведения диссипативных структур (термин Пригожина), раскрывались исторические предпосылки и провозглашались мировоззренческие основания теории самоорганизации, как парадигмы универсального эволюционизма.

Эта школа, основные представители которой работают теперь в США, не пользуется термином «синергетика», а предпочитает называть разработанную ими методологию «теорией диссипативных структур» или просто «неравновесной термодинамикой», подчёркивая преемственность своей школы первым пионерским работам Ларса Онзагера в области необратимых химических реакций (1931).

3.Российская школа синергетики и её представители. У российской школы синергетики есть свои богатые традиции и достижения.

Так, академик Н. Н. Моисеев дополнил теоритические основы синергетики идеями универсального эволюционизма и коэволюции человека и природы.

Российским математиком В. И. Арнольдом совместно с французским математиком Рене Томом, разработан и предложен математический аппарат теории катастроф, пригодный для описания многих процессов самоорганизации.

В рамках школы, руководимой академиком А. А. Самарским и членом-корреспондентом РАН С. П. Курдюмовым, разработана теория самоорганизации на базе математических моделей и вычислительного эксперимента (включая теорию развития в режиме с обострением).

Синергетика. Синергетический подход в естествознании.

Основные принципы, сформированные синергетической наукой для синергетических исследований в естествознании:

— Связь между открытыми системами осуществляется через хаотическое, неравновесное состояние систем соседствующих уровней.

— Когда нелинейные динамические системы объединяются, новое образование не равно сумме частей, а образует систему другой организации или систему иного уровня.

— Общее для всех эволюционирующих систем: неравновесность, спонтанное образование новых микроскопических (локальных) образований, изменения на макроскопическом (системном) уровне, возникновение новых свойств системы, этапы самоорганизации и фиксации новых качеств системы.

— При переходе от неупорядоченного состояния к состоянию порядка все развивающиеся системы ведут себя одинаково (в том смысле, что для описания всего многообразия их эволюций пригоден обобщённый математический аппарат синергетики).

— Развивающиеся системы всегда открыты и обмениваются энергией и веществом с внешней средой, за счёт чего и происходят процессы локальной упорядоченности и самоорганизации.

— В сильно неравновесных состояниях системы начинают воспринимать те факторы воздействия извне, которые они бы не восприняли в более равновесном состоянии.

Синергетика. Синергетические принципы самоорганизации.

Синергетика объясняет процесс самоорганизации в сложных системах и определяет его возможности следующими условиями:

— Система должна быть открытой. Закрытая система в соответствии с законами термодинамики должна в конечном итоге прийти к состоянию с максимальной энтропией и прекратить любые эволюции.

— Открытая система должна быть достаточно далека от точки термодинамического равновесия. В точке равновесия сколь угодно сложная система обладает максимальной энтропией и не способна к какой-либо самоорганизации. В положении, близком к равновесию и без достаточного притока энергии извне, любая система со временем ещё более приблизится к равновесию и перестанет изменять своё состояние. Ни одна открытая система не может бесконечно сохранять своё равновесие. Ни одна закрытая система не может бесконечно оставаться закрытой. Абсолютное равновесие природой не допустимо.

— Фундаментальным принципом самоорганизации служит возникновение нового порядка и усложнение систем через флуктуации (случайные отклонения) состояний их элементов и подсистем. Такие флуктуации обычно подавляются во всех динамически стабильных и адаптивных системах за счёт отрицательных обратных связей, обеспечивающих сохранение структуры и близкого к равновесию состояния системы. Но в более сложных открытых системах, благодаря притоку энергии извне и усилению неравновесности, отклонения со временем возрастают, накапливаются, вызывают эффект коллективного поведения элементов и подсистем и, в конце концов, приводят к «расшатыванию» прежнего порядка и через относительно кратковременное хаотическое состояние системы приводят либо к разрушению прежней структуры, либо к возникновению нового порядка. Поскольку флуктуации носят случайный характер, то состояние системы после бифуркации обусловлено действием суммы случайных факторов.

— Самоорганизация, имеющая своим исходом образование через этап хаоса нового порядка или новых структур, может произойти лишь в системах достаточного уровня сложности, обладающих определённым количеством взаимодействующих между собой элементов, имеющих некоторые критические параметры связи и относительно высокие значения вероятностей своих флуктуаций. В противном случае эффекты от синергетического взаимодействия будут недостаточны для появления коллективного поведения элементов системы и тем самым возникновения самоорганизации. Недостаточно сложные системы не способны ни к спонтанной адаптации ни, тем более, к развитию и при получении извне чрезмерного количества энергии теряют свою структуру и необратимо разрушаются.

Синергетика. Современная синергетика.

В обозначенных структурах и системах неприменимы ни второе начало термодинамики, ни теорема Пригожина о минимуме скорости производства энтропии, что может и должно привести к образованию новых структур и систем, в том числе и более сложных, чем исходные. В отдельных случаях образование новых структур имеет регулярный, волновой характер, и тогда они называются автоволновыми процессами (по аналогии с автоколебаниями).

Феномен появления новых природных структур часто трактуется синергетикой как всеобщий механизм повсеместно наблюдаемого в природе направления эволюции: от элементарного и примитивного к сложносоставному и более совершенному.

Современная синергетика. Глобальный эволюционизм.

С мировоззренческой точки зрения синергетику иногда позиционируют как «глобальный эволюционизм» или «универсальную теорию эволюции», дающую единую основу для описания механизмов возникновения любых новаций, подобно тому, как некогда кибернетика определялась, как «универсальная теория управления», одинаково пригодная для описания любых операций регулирования и оптимизации: в природе, в технике, в обществе и так далее. Однако время показало, что всеобщий кибернетический подход оправдал далеко не все возлагавшиеся на него надежды. Соответственно, и расширительное толкование применимости методов синергетики ко всем проявлениям эволюции и коэволюции, также находит оппозицию и подвергается критике и широкой дискуссии.

Синергетика и законы природы. Синергетика как наука. Синергетика как научный подход и метод. Универсальная теория эволюции – синергетика.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *