в какой доле коры головного мозга завершается переработка зрительной информации

В какой доле коры головного мозга завершается переработка зрительной информации

Проекционная зрительная кора расположена в затылочных долях каждого полушария (поле 17 или VI) и получает организованные ретинотопически афферентные входы от соответствующего, т. е. левого или правого, латерального коленчатого тела. Каждый участок проекционной коры соответствует определенным точкам сетчатки, на которые проецируются изображения предметов, расположенных в противоположной полушарию половине зрительного поля. Проекция центральной ямки и ближайших к ней участков сетчатки занимает около половины первичной зрительной коры. Информация о форме наблюдаемых объектов, об их цвете и их движении поступает по параллельным путям в разные слои первичной зрительной коры. Объединение информации обо всех качествах наблюдаемых объектов происходит в процессе ее переработки во вторичной зрительной и ассоциативной коре.

Аксоны нескольких нейронов латерального коленчатого тела передают информацию входным звездчатым клеткам коры, отростки которых конвергируют к одному из простых пирамидных нейронов первичной зрительной коры. Поэтому рецептивное поле последнего имеет форму вытянутого в длину прямоугольника, составленного из нескольких округлых рецептивных полей нейронов предыдущего уровня (рис. 17.11). Центральная часть такого рецептивного поля представляет собой on- либо off-зону, антагонистичную по отношению к периферии. Наиболее эффективным раздражителем для простых нейронов является действующая вдоль их рецептивного поля световая грань (светлая полоса на темном фоне, темная линия на светлом фоне, контраст между темной и светлой плоскостью). В первичной зрительной коре имеется около 20 популяций простых нейронов, различающихся чувствительностью к определенному углу наклона световой грани.

в какой доле коры головного мозга завершается переработка зрительной информации. Смотреть фото в какой доле коры головного мозга завершается переработка зрительной информации. Смотреть картинку в какой доле коры головного мозга завершается переработка зрительной информации. Картинка про в какой доле коры головного мозга завершается переработка зрительной информации. Фото в какой доле коры головного мозга завершается переработка зрительной информацииРис. 17.11. Рецептивные поля нейронов разных иерархических уровней зрительной системы.

А. Нейроны латерального коленчатого тела имеют округлые рецептивные поля с on- или off-центрами, подобные рецептивным полям ганглиозных клеток. Конвергенция нейронов латерального коленчатого тела к простым нейронам проекционной зрительной коры (опосредованная звездчатыми клетками) формирует их рецептивные поля прямоугольной формы и максимальной чувствительности к определенному углу наклона линейного стимула.

Б. Конвергенция нейронов зрительной коры к комплексным нейронам создает рецептивное поле последних, в котором угол наклона линейных стимулов не имеет значения.

Наряду с простыми нейронами в первичной зрительной коре имеются комплексные нейроны, получающие афферентную информацию от нескольких простых нейронов и от входных клеток коры. Рецептивные поля комплексных нейронов больше, чем у простых нейронов, а линейная ориентация стимулов уже не имеет решающего значения для их возбуждения: самым значимым для них раздражителем служит движение грани или светового контура через рецептивное поле. Более половины комплексных нейронов глазодоминантны, т. е. сильнее реагируют на раздражение одного глаза, каждый из которых поставляет чуть отличающуюся информацию в связи с поперечной диспарацией. Глазодоминантные нейроны обеспечивают бинокулярное зрение, необходимое для определения пространственной глубины наблюдаемых объектов.

Ни простые, ни комплексные нейроны не реагируют на монотонные участки внутри объекта или фона — такие участки не дают информации, и восприятие внутренних участков зрительного объекта полностью определяется их границами.

Анализ информации о цвете в первичной зрительной коре осуществляют сосредоточенные там в виде так называемых капель (blobs) двойные противоцветные клетки, получающие афферентную информацию от простых противоцветных клеток сетчатки. Двойные противоцветные клетки возбуждаются (или тормозятся) при попадании одного цвета в центр рецептивного поля, а антагонистичного цвета — на периферию. Первичная зрительная кора не может обеспечить цветовое восприятие, которое осуществляется на следующей ступени преобразования поступившей информации в регионах V2 и V4 (последний расположен на стыке теменной и височной областей).

Источник

Как мозг обрабатывает зрительную информацию

в какой доле коры головного мозга завершается переработка зрительной информации. Смотреть фото в какой доле коры головного мозга завершается переработка зрительной информации. Смотреть картинку в какой доле коры головного мозга завершается переработка зрительной информации. Картинка про в какой доле коры головного мозга завершается переработка зрительной информации. Фото в какой доле коры головного мозга завершается переработка зрительной информации

Человеческий мозг сначала воспринимает изображение, затем сравнивает его с неким «шаблоном», хранящимся в памяти, а после уже оценивает увиденное — принимает решение. На этом этапе и сосредоточили внимание петербургские учёные.

Специалисты Институт физиологии им. И. П. Павлова РАН и Военно-медицинской академии исследуют области головного мозга, анализирующие изображение. Они установили, что форму наблюдаемого объекта определяют несколько участков фронтальной коры головного мозга. Учёные применили новый метод — трактографию проводящих путей в головном мозге живого человека. Он позволяет установить, как происходит взаимодействие между различными областями фронтальной коры и какие области мозга посылают туда информацию после предварительной обработки. Работу учёных поддержал РФФИ.

Главным образом, специалистов интересовало, один или несколько центров принятия решений существуют в головном мозге человека.

Для ответа на этот вопрос исследователи создали аппаратно-программный комплекс, который позволяет проводить электрофизиологические и психофизические измерения, функциональную магнитно-резонансную томографию для пространственного картирования активированных областей мозга, а также анатомическую магнитно-резонансную томографию и математическое моделирование. Испытуемым показывали голографические изображения — решётки различной ориентации, которые надо было определить.

После сложного анализа многочисленных данных учёные предположили, что в первые 100 мс в затылочной коре происходит оценка первичных физических характеристик изображения, таких как яркость, контраст и ориентация. Примерно через 200 мс происходит восприятие более сложных характеристик стимула: целостного изображения и ориентации. Через фронтальные доли определяют, что им показывают, и, наконец, через решение принято окончательно.

Исследователи выяснили, какие участки фронтальной коры определяют структуру изображения. Частично эти зоны совпадают с теми, которые осуществляют выбор между разными объектами, но отличаются от зон, которые реагируют на эмоциональные стимулы. Очень важно, что различные задачи, возникающие при оценке изображения, решают разные участки коры и что фронтальная кора головного мозга содержит несколько областей, которые оценивают ориентацию элементов изображения.

NAME] => URL исходной статьи [

Ссылка на публикацию: STRF.ru

Код вставки на сайт

Как мозг обрабатывает зрительную информацию

в какой доле коры головного мозга завершается переработка зрительной информации. Смотреть фото в какой доле коры головного мозга завершается переработка зрительной информации. Смотреть картинку в какой доле коры головного мозга завершается переработка зрительной информации. Картинка про в какой доле коры головного мозга завершается переработка зрительной информации. Фото в какой доле коры головного мозга завершается переработка зрительной информации

Человеческий мозг сначала воспринимает изображение, затем сравнивает его с неким «шаблоном», хранящимся в памяти, а после уже оценивает увиденное — принимает решение. На этом этапе и сосредоточили внимание петербургские учёные.

Специалисты Институт физиологии им. И. П. Павлова РАН и Военно-медицинской академии исследуют области головного мозга, анализирующие изображение. Они установили, что форму наблюдаемого объекта определяют несколько участков фронтальной коры головного мозга. Учёные применили новый метод — трактографию проводящих путей в головном мозге живого человека. Он позволяет установить, как происходит взаимодействие между различными областями фронтальной коры и какие области мозга посылают туда информацию после предварительной обработки. Работу учёных поддержал РФФИ.

Главным образом, специалистов интересовало, один или несколько центров принятия решений существуют в головном мозге человека.

Для ответа на этот вопрос исследователи создали аппаратно-программный комплекс, который позволяет проводить электрофизиологические и психофизические измерения, функциональную магнитно-резонансную томографию для пространственного картирования активированных областей мозга, а также анатомическую магнитно-резонансную томографию и математическое моделирование. Испытуемым показывали голографические изображения — решётки различной ориентации, которые надо было определить.

После сложного анализа многочисленных данных учёные предположили, что в первые 100 мс в затылочной коре происходит оценка первичных физических характеристик изображения, таких как яркость, контраст и ориентация. Примерно через 200 мс происходит восприятие более сложных характеристик стимула: целостного изображения и ориентации. Через фронтальные доли определяют, что им показывают, и, наконец, через решение принято окончательно.

Исследователи выяснили, какие участки фронтальной коры определяют структуру изображения. Частично эти зоны совпадают с теми, которые осуществляют выбор между разными объектами, но отличаются от зон, которые реагируют на эмоциональные стимулы. Очень важно, что различные задачи, возникающие при оценке изображения, решают разные участки коры и что фронтальная кора головного мозга содержит несколько областей, которые оценивают ориентацию элементов изображения.

Источник

Кора головного мозга: участки, анализаторы

Значение, роль коры больших полушарий головного мозга человека

В статье мы рассмотрим локализацию функций, участки, анализаторы, поля, участки, области зоны коры больших полушарий головного мозга человека (мужчины, женщины). Неврологи, невропатологи, рефлексотерапевты, рефлексологи выделяют 4 основных положения, применительно к практической деятельности невропатолога, современного учения о локализации функций в коре головного мозга.

1. Очень сложная морфологическая и функциональная дифференциация коры больших полушарий головного мозга. Лобная доля больше отвечает за двигательные функции. Теменная, затылочная и височная зоны больше отвечают за чувствительные функции.

3. Формирование специальных корковых областей в процессе практической деятельности.

Функция творит центр

По Ивану Петровичу Павлову: «Функция творит центр!» В раннем детстве границы корковых центров диффузны и менее дифференцированы, и лишь по мере приобретения жизненного опыта происходит постепенная концентрация функциональных зон, в связи с чем у детей первых лет жизни слабо выражены очаговые корковые симптомы и чаще преобладает общемозговая симптоматика.

4. Существенные различия в локализации более простых и более сложных функций. Чем проще функция, тем она точнее локализована. И наоборот, наиболее сложные функции обусловлены интегративной деятельностью всего головного мозга, поэтому понятие «корковый центр» (отдел коры головного мозга, поля коры головного мозга, участки коры головного мозга, части коры головного мозга) в большинстве случаев относительное и условное. К простым корковым функциям относятся чувствительная функция, двигательная функция, зрительная функция, слуховая функция, вестибулярная функция, обонятельная функция, вкусовая функция. К сложным корковым функциям относятся речь, письмо, чтение, счет, праксис, гнозис, мышление, память.

Локализация функций и симптомов

Проводя топическую диагностику рефлексотерапевт, невролог, невропатолог, микроневропатолог, детский невролог, взрослый невролог определяет не только локализацию поражения корковых центров, но и локализацию симптомов. Простые корковые функции связаны с проекционными пластинками коры (пятой и четвертой), имеющими непосредственную связь с периферией и являющимися корковыми отделами анализаторов. Сложные корковые функции связаны с ассоциативными слоями коры (вторым и третьим). Последние слои соединены горизонтальными волокнами с другими участками коры головного мозга в пределах одного полушария и не имеют прямого выхода на периферию. Большое значение в обеспечении сложных корковых функций имеют также комиссуральные связи между полушариями, проходящими через мозолистое тело.

Простые корковые функции обычно представлены в обоих полушариях головного мозга. Сложные корковые функции чаще имеют асимметричное представительство в правом или левом полушарии головного мозга. Итак, какие бывают поля, участки, области, типы коры головного мозга, отделы, анализаторы, части коры головного мозга?

Двигательная кора головного мозга, двигательные центры головного мозга, двигательные анализатор, моторный

Главным корковым отделом двигательного анализатора, его первичным полем, является предцентральная извилина, в верхних отделах которой находится проекционная область мышц стопы, голени, бедра, в средней части – туловища и руки, в нижней трети – лица. Двигательная иннервация построена по соматотопическому принципу. На этом уровне осуществляются тонкие дифференцированные движения. Кроме того, имеются дополнительные двигательные зоны – это вторичные поля двигательного анализатора и третичные поля двигательного анализатора. Дополнительные двигательные зоны обеспечивают сложные автоматизированные двигательные акты. Например, в парацентральной дольке находятся корковые центры тазовых органов. В задних отделах верхней лобной извилины находится переднее адверсивное поле. Заднее адверсивное поле располагается на границе верхней теменной дольки и затылочной области. Задние отделы средней лобной извилины отвечают за сочетанный поворот головы и глаз в противоположную сторону. Задние отделы нижней лобной извилины осуществляет движения типа орального автоматизма – глотание, жевание, лизание.

Чувствительная кора головного мозга, чувствительные центры головного мозга, чувствительный анализатор

Главным корковым отделом поверхностных и глубоких видов чувствительности является постцентральная извилина, где также имеется соматотопическое представительство участков периферии, аналогичное вышеуказанному. К поверхностной чувствительности относятся температурная чувствительность, болевая чувствительность, тактильная чувствительность.

Стереогноз, стереогнозис

Сложные виды чувствительности локализованы в коре полушарий головного мозга на уровне верхней теменной дольки, где отсутствует соматотопика. К сложным видам чувствительности относятся стереогностическая чувствительность (стереогноз, стереогнозис), двумерно-пространственная чувствительность, чувство локализации и дискриминации. Зрительная проекционная зона (зрительная зона коры) занимает область шпорной борозды – внутренняя поверхность затылочной доли. Слуховая проекционная зона (слуховая зона коры) занимает центр верхней височной извилины и извилину Гешля. Вестибулярная проекционная зона находится рядом со слуховой. Обонятельная проекционная зона локализуется на внутренней поверхности височной доли, в извилине гиппокампа. Вкусовая проекционная зона находится рядом с последней, а также в области покрышки и островка Reili.

Теперь остановимся на локализации сложных корковых функций.

Обычно сложные корковые функции локализуются в левом полушарии головного мозга у правшей и в правом полушарии головного мозга у левшей.

Функцию речи обеспечивает сенсорный центр (центр Вернике), который располагается в заднем отделе верхней височной извилины. При поражении центра Вернике наблюдается сенсорная афазия. Также функцию речи обеспечивает двигательный центр (центр Брока), который располагается в области задних отделов нижней лобной извилины. При поражении центра Брока наблюдается моторная афазия. При патологии на стыке височной и затылочной долей формируется амнестическая афазия и семантическая афазия. Речевые зоны коры головного мозга.

Лексический анализатор, центр лексии, функция чтения

Функции чтения обеспечивает лексический центр (центр лексии). Центр лексии располагается в угловой извилине.

Графический анализатор, центр графии, функция письма

Функции письма обеспечивает графический центр (центр графии). Центр графии располагается в заднем отделе средней лобной извилины.

Счетный анализатор, центр калькуляции, функция счета

Функции счета обеспечивает счетный центр (центр калькуляции). Центр калькуляции располагается на стыке теменно-затылочной области.

Праксис, праксический анализатор, центр праксиса

Праксис – это способность к выполнению целенаправленных двигательных актов. Праксис формируется в процессе жизнедеятельности человека, начиная с грудного возраста, и обеспечивается сложной функциональной системой мозга с участием корковых полей теменной доли (нижняя теменная долька) и лобной доли, особенно левого полушария у правшей. Для нормального праксиса необходимы сохранность кинестетической и кинетической основы движений, зрительно-пространственной ориентировки, процессов программирования и контроля целенаправленных действий. Поражение праксической системы на том или ином уровне проявляется таким видом патологии, как апраксия. Термин «праксис» происходит от греческого слова «praxis», которое означает «действие». Апраксия – это нарушение целенаправленного действия при отсутствии параличей мышц и сохранности составляющих его элементарных движений.

Гностический центр, центр гнозиса

В правом полушарии у правшей, в левом полушарии головного мозга у левшей представлены многие гностические функции. При поражении преимущественно правой теменной доли может возникать анозогнозия, аутопагнозия, конструктивная апраксия. С центром гнозиса также связаны музыкальный слух, ориентация в пространстве, центр смеха.

Память, мышление

Наиболее сложные корковые функции – это память и мышление. Эти функции не имеют четкой локализации.

Память, функция памяти

Мышление, функция мышления

Функция мышления – это результат интегративной деятельности всего головного мозга, особенно лобных долей, которые участвуют в организации целенаправленной сознательной деятельности человека, мужчины, женщины. Происходят программирование, регуляция и контроль. При этом у правшей левое полушарие является основой преимущественно абстрактного словесного мышления, а правое полушарие связано главным образом с конкретным образным мышлением.

Развитие корковых функций начинается с первых месяцев жизни ребенка, достигает своего совершенства к 20 годам.

Зоны коры головного мозга

В последующих статьях мы остановимся на актуальных вопросах неврологии: зоны коры головного мозга, зоны больших полушарий, зрительная, зона коры, слуховая зона коры, моторные двигательные и чувствительные сенсорные зоны, ассоциативные, проекционные зоны, моторные и функциональные зоны, речевые зоны, первичные зоны коры головного мозга, ассоциативные, функциональные зоны, фронтальная кора, соматосенсорная зона, опухоль коры, отсутствие коры, локализация высших психических функций, проблема локализации, мозговая локализация, концепция динамической локализации функций, методы исследования, диагностики.

Источник

PsyAndNeuro.ru

Обработка визуальной информации: от сетчатки до V1

в какой доле коры головного мозга завершается переработка зрительной информации. Смотреть фото в какой доле коры головного мозга завершается переработка зрительной информации. Смотреть картинку в какой доле коры головного мозга завершается переработка зрительной информации. Картинка про в какой доле коры головного мозга завершается переработка зрительной информации. Фото в какой доле коры головного мозга завершается переработка зрительной информации

В обработку визуальных сигналов вовлечено большое количество структур мозга, взаимосвязи которых многочисленны и до конца не изучены. Информация об анализе визуальных стимулов, которой мы обладаем на данный момент, по крупицам собрана из огромного количества отдельных исследований. Каждое исследование предоставляет результаты одного или серии экспериментов, а их сумма позволяет составить общее впечатление о некоторых аспектах работы головного мозга, доказать или опровергнуть выдвигаемые гипотезы.

Визуальная система часто изучается в ходе фундаментальных исследований в области нейронаук по ряду причин. Во-первых, она связана со зрением — основным каналом получения информации из окружающего мира, но при этом она также узкоспециализирована, что позволяет разрабатывать разнообразную методологию исследований. Во-вторых, область зрительной коры удобна для изучения на обезьянах с использованием инвазивных методов регистрации активности мозга в виду своего расположения; в экспериментах с участием людей успешно применяются неинвазивные методы. Кроме того, спектр вопросов, которые представляется возможным прояснить в ходе исследований, достаточно широк: аспекты осознанного/неосознанного восприятия, природа воображения, обработка и фильтрация визуальной информации, распределение внимания, повреждения мозга и связанные с ними расстройства и др. В данной статье мы сосредоточимся в основном на первичной зрительной коре, оговорим предшествующий ей путь нервных сигналов и некоторые общие свойства зрительной коры.

Визуальная система

Когда мы видим изображение, ганглионарные клетки сетчатки генерируют нервные импульсы и передают их в латеральное (оно же наружное) коленчатое тело (ЛКТ), которое расположено в таламусе. Оно состоит из шести слоев, первые два из них представлены магноцеллюлярными клетками, остальные четыре — парвоцеллюлярными. Магноцеллюлярные клетки передают информацию об изображениях с низкой контрастностью, движущихся объектах, они не восприимчивы к цвету, их сигналы быстрые и кратковременные, они дают представление о воспринимаемой информации в целом, то есть, быстро и схематично, в низком разрешении. Парвоцеллюлярные клетки чувствительны к цвету и лучше воспринимают высококонтрастные изображения, они передают более медленные и длительные сигналы, что позволяет получить более детальную, хотя и медленную информацию.

Через латеральное коленчатое тело сигналы передаются далее в затылочные доли обоих полушарий, которые ответственны за обработку зрительных стимулов. Первая кортикальная область, куда попадают эти сигналы — первичная зрительная кора (V1). V1 расположена в заднем полюсе затылочных долей, это самая древняя и простая из кортикальных зон, однако, наиболее изученная. V1 обрабатывает информацию о движущихся и статичных объектах, отвечает за распознавание простых образов (например, геометрических форм).

V1 состоит из шести слоев, наибольшее количество аксонов ЛКТ подходит к IV слою, который разделяется еще на четыре подслоя. Клетки V1 бывают двух видов: простые и сложные. Простые клетки встречаются в слоях IV и VI, они реагируют на ориентацию (угол), расположение (относительно центра визуального поля) и яркость объектов. По строению они имеют возбуждающий центр и тормозящую периферию или наоборот (см. рис.). Их ответ на стимул прямо пропорционален соответствию этого стимула «идеалу». Другими словами, у клетки есть «идеальный» стимул, в ответ на который реакция будет наиболее интенсивна, чем дальше стимул от «идеального», тем менее интенсивна реакция. Сложные клетки находятся в слоях II, III, и V, они также имеют предпочитаемую ориентацию, но не чувствительны к местонахождению и яркости объекта. Сложная клетка совмещает в себе две простые клетки с совпадающей предпочитаемой ориентацией, центр клетки полярен периферийным частям.

в какой доле коры головного мозга завершается переработка зрительной информации. Смотреть фото в какой доле коры головного мозга завершается переработка зрительной информации. Смотреть картинку в какой доле коры головного мозга завершается переработка зрительной информации. Картинка про в какой доле коры головного мозга завершается переработка зрительной информации. Фото в какой доле коры головного мозга завершается переработка зрительной информациив какой доле коры головного мозга завершается переработка зрительной информации. Смотреть фото в какой доле коры головного мозга завершается переработка зрительной информации. Смотреть картинку в какой доле коры головного мозга завершается переработка зрительной информации. Картинка про в какой доле коры головного мозга завершается переработка зрительной информации. Фото в какой доле коры головного мозга завершается переработка зрительной информации

Разница реакций простых и сложных клеток

Условия эксперимента: несколько оптимально ориентированных линий движутся через визуальное поле.

Реакция простых клеток: Клетки реагируют синусоидальными колебаниями мембранного потенциала в соответствии с чередованием черных линий и просветов, проходящих через визуальное поле. Потенциалы действия возникают только в фазе деполяризации.

Реакция сложных клеток: Наблюдается постоянная деполяризация, потенциалы действия выглядят беспорядочными.

в какой доле коры головного мозга завершается переработка зрительной информации. Смотреть фото в какой доле коры головного мозга завершается переработка зрительной информации. Смотреть картинку в какой доле коры головного мозга завершается переработка зрительной информации. Картинка про в какой доле коры головного мозга завершается переработка зрительной информации. Фото в какой доле коры головного мозга завершается переработка зрительной информации

Ice Cube Model

Эта гипотетическая кубическая модель придумана для пояснения устройства клеток первичной визуальной коры, а именно – как устроены предпочитаемые ориентации и, соответственно, реакции нейронов V1. Так, V1 можно условно поделить на кубы 2 ммˆ3, каждый из которых получает сигналы от обоих глаз. Клетки с одинаковыми ориентационными предпочтениями формируют горизонтальные колонки, при этом соседние вертикальные колонки имеют слегка отличающиеся ориентационные предпочтения.

в какой доле коры головного мозга завершается переработка зрительной информации. Смотреть фото в какой доле коры головного мозга завершается переработка зрительной информации. Смотреть картинку в какой доле коры головного мозга завершается переработка зрительной информации. Картинка про в какой доле коры головного мозга завершается переработка зрительной информации. Фото в какой доле коры головного мозга завершается переработка зрительной информации

Чувствительные к цветам клетки также собраны в столбцы (также их называют каплями, гиперколонками, шариками) 0,5 мм в диаметре в зонах соответствующих превалирующих глаз (картинка с цилиндрами). Каждый такой столбец содержит реагирующие либо на красно-зеленый, либо на сине-желтый контрасты.

в какой доле коры головного мозга завершается переработка зрительной информации. Смотреть фото в какой доле коры головного мозга завершается переработка зрительной информации. Смотреть картинку в какой доле коры головного мозга завершается переработка зрительной информации. Картинка про в какой доле коры головного мозга завершается переработка зрительной информации. Фото в какой доле коры головного мозга завершается переработка зрительной информации

Оптическая репрезентация карты зрительной коры у млекопитающих (кошки)

Суть эксперимента: Данные регистрируются инвазивным способом. В черепной кости делается отверстие в необходимой зоне (в данном случае V1), кора подсвечивается, на нее направляется линза и камера, которая позволяет регистрировать изменение кровяного потока. Данные регистрируются до и после предъявления животному стимула (линии с определенной ориентацией), две картинки сравниваются для выявления наиболее активных в момент демонстрации стимула зон. Эксперимент повторяется много раз со стимулами разной ориентации, для каждой из них берется сумма значений.

в какой доле коры головного мозга завершается переработка зрительной информации. Смотреть фото в какой доле коры головного мозга завершается переработка зрительной информации. Смотреть картинку в какой доле коры головного мозга завершается переработка зрительной информации. Картинка про в какой доле коры головного мозга завершается переработка зрительной информации. Фото в какой доле коры головного мозга завершается переработка зрительной информации

Подписи к картинке: (А) Организация эксперимента: – экран, на котором показана светлая полоска; – регистрация сигналов со зрительной коры. (В) – ориентация презентуемых стимулов; – реакция на стимулы; – время (секунды).

Затем каждая ориентация кодируется определённым цветом для построения карты, где цвета накладываются друг на друга и отображают скопления нейронов с одинаковыми ориентационными предпочтениями, кроме того, соседние цветовые сегменты карты имеют похожие предпочтения. На пересечениях цветовых сегментов ориентационное предпочтение быстро меняется упорядоченным образом, т.е. в этих областях происходят отклики на стимулы с разной ориентацией. Однако данный эксперимент измеряет активацию нейронов только косвенным образом. Вывод можно сделать следующий: организация кортикальных нейронов в аспекте ориентационных предпочтений несколько сложнее, нежели в кубической модели.

Составление ориентационных карт:

в какой доле коры головного мозга завершается переработка зрительной информации. Смотреть фото в какой доле коры головного мозга завершается переработка зрительной информации. Смотреть картинку в какой доле коры головного мозга завершается переработка зрительной информации. Картинка про в какой доле коры головного мозга завершается переработка зрительной информации. Фото в какой доле коры головного мозга завершается переработка зрительной информации

Ориентация и зрение

в какой доле коры головного мозга завершается переработка зрительной информации. Смотреть фото в какой доле коры головного мозга завершается переработка зрительной информации. Смотреть картинку в какой доле коры головного мозга завершается переработка зрительной информации. Картинка про в какой доле коры головного мозга завершается переработка зрительной информации. Фото в какой доле коры головного мозга завершается переработка зрительной информации

Подписи к картинке: (А) ориентационные предпочтения; (В) окулярная доминантность – пересечения – пики доминантности; (C) пики пересечений и окулярной доминантности на карте доминантности; (D) бинарная карта окулярной доминантности с пересечениями

Свойства образования топографической карты в зрительной системе

В ретинотопических картах соседние клетки сетчатки представлены соседними клетками V1, такая карта демонстрирует изоморфизм и непрерывное отображение. Также как в других полушарных структурах мозга, репрезентация левого визуального поле отражается в правой части зрительной коры и наоборот. Также ввиду большего количества рецепторов в центре сетчатки, он шире представлен в зрительной коре, нежели периферия. В топографической карте отображаются: ориентационные предпочтения, доминирующий глаз, пространственное разрешение.

Слепое зрение

Слепое зрение — возможность видеть и распознавать объекты, будучи неосведомленным об этом. Феномен проявляется в некоторых случаях повреждения зрительной коры и говорит о том, что видеть и быть осведомленным — разные мозговые функции.

Условия эксперимента, доказывающего феномен слепого зрения: субъекту предъявляются стимулы, которые движутся либо в одну, либо в другую сторону. И хотя субъект утверждает, что не видит их, при просьбе его «угадать» в какую сторону двигался объект, то правильные ответы статистически значительно превышали случайную вероятность. Из этого эксперимента можно заключить, что сетчатка может иметь путь передачи визуальной информации помимо латерального коленчатого тела, и эта информация каким-то образом анализируется мозгом.

Подготовила: Алмазова Т.А.

H. Hubel, T. N. Wiesel. Receptive fields of single neurones in the cat’s striate cortex, – J Physiol. 1959 Oct; 148(3): 574–591.

Carandini, D. Ferster Membrane. Potential and Firing Rate in Cat Primary Visual Cortex, – Journal of Neuroscience, 1 January 2000, 20 (1) 470-484.

G. Matthews. Neurobiology: Molecules, Cells and Systems, – Blackwell Science, 1998.

К. Ю. М. Смит. Биология сенсорных систем, – М.: БИНОМ, 2013.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *