чем отличаются составные элементы машины
Машины и их основные элементы
Тема: Механизм и машина. Классификация машин.
Тема: Критерии работоспособности деталей машин. Контактная прочность деталей машин
Машины и их основные элементы
Человек создал машины для производства различных видов работ или преобразования энергии. Современные машины обеспечивают резкое повышение производительности труда человека. Например, человек в течение длительного времени может развивать мощность не более 0,1 кВт, а мощность машин-преобразователей энергии (электрических генераторов) достигает 1200 МВт.
В машине можно выделить совокупность совместно работающих деталей, которые представляют собой конструктивно обособленные единицы, объединенные одним назначением; эти сборочные единицы называют узлами. Узлы одной машины можно изготавливать на разных заводах. Примерами таких узлов являются муфты, редукторы, электрошпиндели, шарикоподшипники.
Тела, образующие кинематическую пару, называются звеньями. Совокупность звеньев подвижно соединенных кинематических пар называется кинематической цепью.
На рис. 2 представлены кине-матические цепи, состоящие из пары зубчатых колес (рис. 2, а), а также цилиндрических, конической и червячной пар (рис. 2, б). Если в кинематической
Рис.1 цепи одно звено закреплено, то она
является механизмом (рис.3).
В машиностроении при вычерчивании различных кинематических пар приняты условные обозначения, утвержденные ГОСТом 2.770-68*
Основные критерии работоспособности и
С какой целью в расчетах деталей машин используют модели нагружения?
Контрольные вопросы
Какие вопросы изучает дисциплина «Детали машин»?
Детали машин – научная дисциплина по теории расчета и конструированию деталей и узлов машин общемашиностроительного применения. Детали общего назначения применяют в машиностроении в очень больших количествах, поэтому любое усовершенствование расчета и конструкций этих деталей, позволяющее уменьшить затраты материала, снизить стоимость производства, повысить долговечность, приносит большой экономический эффект.
Основными задачами курса являются:
· изучение конструкций и критериев работоспособности основных деталей и узлов машин;
· изучение основ теории совместной работы и методов расчета деталей
· формирование навыков конструирования деталей и узлов машин.
Чем отличаются составные элементы машины?
Под деталью понимают элемент конструкции (изделие), изготовленный из однородного материала (одной марки) без применения сборочных операций.
Совокупность деталей, соединенных посредством сборочных операций и предназначенных для совместной работы или выполняющих определенные функции, называют сборочной единицей или узлом.
Механизмом называют систему твердых тел, предназначенную для преобразования движения одного или нескольких тел в требуемые движения других тел (редуктор, коробка передач и др.).
Машиной называют механизм или устройство, выполняющие механические движения и служащие для преобразования энергии, материалов или информации с целью облегчения или замены физического или умственного труда человека и повышения его производительности.
Какую структуру имеет машина?
На какие группы подразделяют детали машин по функциональному
Признаку?
По функциональному признаку детали машин общего назначения подразделяются на следующие группы:
1. Детали соединений и соединения.
1.1. Разъемные соединения: резьбовые, клиновые, штифтовые, шпоночные, шлицевые (зубчатые), профильные, клемовые.
1.2. Неразъемные соединения: свариваемые, клепаные, паяные,
1.3. Промежуточные соединения: цилиндрические с натягом, соединения стяжными кольцами и планками.
2.1. Управляющие передачи: двигательные передачи, передачи исполнительным механизмом.
2.2. По физическому эффекту.
2.2.4.1. Зацеплением: зубчатые, винт – гайка, червячные,
2.2.4.2. Трением: фрикционные, ременные.
3. Детали, обслуживающие вращательное движение.
3.2. Подшипники: качения, скольжения.
4. Шарнирно-рычажные механизмы: направляющие кулисы и ползуны,
кривошипно-ползунный механизм, кривошипы, шатуны, коромысла, кулачки, эксцентрики, ролики.
5. Упругие элементы: пружины, рессоры.
6. Уравновешивающие равномерность движения: маховики, маятники,
7. Детали, обеспечивающие смазывание и защиту от загрязнения: манжеты, уплотнения и т. д.
8. Детали и механизмы управления: рукоятки, тяги.
Какими требованиями должна обладать вновь разрабатываемая деталь?
Вновь разрабатываемая машина (механизм) должна иметь более высокие технико-экономические показатели по сравнению с существующим (базовым) образцом: более высокую скорость и производительность при меньших затратах на производство и эксплуатацию, меньшую массу, металлоемкость и энергоемкость.
С какой целью в расчетах деталей машин используют модели нагружения?
Для расчета и проектирования деталей и узлов машин необходимо знать нагрузки, которые могут воздействовать на деталь в процессе ее эксплуатации. При проектировании обычно оперируют расчетными схемами деталей, а все нагрузки, воздействующие на детали, рассматривают как режимы нагружений. Для более точного учета нагрузок в расчетах деталей машин используют общепринятые типичные модели нагружения.
Машины и их основные элементы
1. Машины и их основные элементы
2. Плоская система сил
Список использованной литературы
1. Машины и их основные элементы
Основные сведения о машинах и механизмах
В строительстве применяются различные машины и механизмы, предназначенные для повышения производительности труда и облегчения труда людей. В состав механизмов входит множество тел, часть из которых совершает движения. Закономерность движения определяется связями этих тел друг с другом. Так, подвижная губка слесарных тисков будет двигаться вполне определенно-поступательно при вращении рукоятки.
Механизм — это система тел, связанных между собой и предназначенных для преобразования движения одного или нескольких тел в движения других тел. Тела, образующие механизм, называются звеньями.
Звенья в свою очередь могут состоять из нескольких отдельных тел, жестко соединенных между собой. Такие тела называют деталями.
В каждом механизме обязательно есть неподвижное звено, которое называют стойкой или станиной. Звено, движение которому сообщается извне, называют ведущим, а звено, которому движение передается,– ведомым. В слесарных тисках, например, корпус с неподвижной губкой образует неподвижное звено, ведущим звеном является рукоятка, а ведомым — подвижная губка.
Подвижное соединение двух звеньев называют кинематической парой. В зависимости от характера движения пары бывают вращательные и.поступательные. Если механизм имеет более двух звеньев, то его можно разбить на несколько пар. Систему звеньев, образующих между собой кинематические пары, называют кинематической цепью.
На чертежах для указания пути передачи движения от ведущего звена к ведомому, а также для возможности изучения движения зиеньев механизма вместо конструктивного изображения кинематических пар и звеньев механизма вводят их условные изображения в виде схем. Схема, на которой в условных обозначениях показаны звенья и пары, называется кинематической схемой механизма.
Па рис. 1.1, а в качестве примера представлена конструктивная схема механизма двигателя внутреннего сгорания, а на рис. 1.1, б — его кинематическая схема. Механизм имеет четыре звена: поршень У, неподвижный цилиндр 2, шатун 3 и кривошип 4, образующих кинематическую цепь, состоящую из одной поступательной пары: стойка (неподвижный цилиндр) — ползун, и трех вращательах пар — ползун — шатун, шатун — кривошип, кршюшип — гойка.
Механизмы чаще всего являются составными частями машин. Машина — это устройство, выполняющее механические движе-ия для преобразования энергии или для выполнения полезной аботы.
По характеру выполняемых работ машины можно разделить на ве основные группы: энергетические и рабочие.
Рис. 1.1. Схема механизма двигателя внутреннего сгорания
Энергетические машины служат для преобразования любого вида энергии в механическую работу и наоборот. Например, двигатель внутреннего сгорания превращает химическую энергию топлива в механическую энергию вращающегося вала, а в электрогенераторе механическая энергия превращается в электрическую.
Рабочие машины делятся на технологические и транспортные. Технологические машины преобразуют материал. К ним, например, относятся машины для земляных работ, камнедробилки и многие другие.
Транспортные машины — автомобили, насосы, транспортеры и другие — используются для перемещения материалов, не изменяя их форму и свойства.
Рабочая машина приводится в движение энергетической машиной. Движение от нее передается рабочему органу, который непосредственно воздействует на обрабатываемый материал. При этом рабочий орган может соединяться непосредственно с двигателем или через передаточный механизм.
Механической передачей называется механизм, служащий для преобразования скорости движения и момента двигателя при передаче его рабочему органу машины.
Различают передачи, осуществляемые силами трения,– ременные, фрикционные, и передачи, основанные на использовании зацепления,– цепные, зубчатые и червячные.
В каждой передаче различают два вала: ведущий и ведомый; Ведущий вал приводит во вращение ведомый. Основными характеристиками передачи являются мощность на ведущем Л/ и на ведомом N2 валах, быстроходность, определяемая частотой вращения ведущего щ и ведомого п2 валов.
Передачу характеризуют также передаточное число i и коэффициент полезного действия (КПД) г.
Для определения вращающего момента (Мв), действующего на валах, пользуются формулой: Мв = 9550 N/n, Н-м, где N— в кВт, п — в об/мин.
В строительных машинах чаще всего применяются передачи при i>l. При передаче мощности с ведущего вала на ведомый они уменьшают частоту вращения и одновременно увеличивают вращающий момент.
Ременная передача состоит из двух шкивов, жестко закрепленных на валах, и бесконечного ремня, надетого на шкивы с начальным натяжением. Движение с ведущего шкива на ведомый передается за счет сил трения, возникающих между шкивами и ремнем.
В строительных машинах наиболее распространены клиноре-менные передачи. Клиновые ремни изготавливают хлопчатобумажными прорезиненными в виде замкнутой бесконечной ленты семи различных типов: О, А, Б, В, Г, Д, Е, которые отличаются размерами поперечного сечения.
Передаточное число ременной передачи определяется по приближенной формуле
Ременные передачи применяются преимущественно для передачи вращения между параллельными валами, расположенными на значительном расстоянии.
Фрикционная передача представляет собой два катка, сестко посаженных на валах и прижатых друг к другу некоторой илой. Передача движения осуществляется силами трения по по-1ерхности прижатия катков.
Зубчатая передача состоит из пары зубчатых колес, кестко соединенных с валами. Зубья одного колеса входят во впа-шны другого. При вращении ведущего колеса зубья его перекаты-»даются по зубьям ведомого, воздействуют на него и приводят во вращение.
Рис. 1.4. Схема зубчатой передачи:
Передаточное число зубчатой передачи
где 21( z2 — число зубьев соответственно ведущего и ведомого колес.
Зубчатые передачи характеризуются шагом t и модулем m = tjn.
Модуль зубчатого зацепления m измеряется в миллиметрах. Значения модулей стандартизованы. Все размеры зубчатого колеса принято выражать в долях модуля.
Зубчатые передачи наиболее распространены, так как обеспечивают постоянное передаточное число, высокий КПД, возможность передачи больших усилий, имеют малые габариты. К недостаткам передач относятся сложность изготовления и небольшое межосевое расстояние.
Червячную передачу образуют червяк и червячное колесо. Червяк — это винт с трапецеидальной резьбой. Он бывает однозаходный и многозаходный. Червячное колесо — цилиндрическое колесо, снабженное косыми зубьями, имеющими впадину на середине обода. Движение в червячной передаче осуществляется от червяка к колесу.
Передаточное число червячной передачи определяется как отношение числа зубьев колеса zK к числу заходов червяка z4:
Главные достоинства червячной передачи — возможность полу-ения больших передаточных чисел (до 200), плавность в работе бесшумность. Червячные передачи с небольшим числом заходов червяка обладают свойством самоторможения, т. е. вращение от червячного колеса не может передаваться червяку. Это свойство часто используют в подъемных механизмах небольшой грузоподъемности, например в червячных талях.
Они служат для понижения частоты вращения и увеличения вращающих моментов. В зависимости от числа зубчатых передач редукторы бывают одно-, двух- и трехступенчатые. Передаточное число редуктора равно произведению передаточных чисел каждой пары. В зависимости от формы колес они бывают цилиндрические, конические, коническо-цилиндрические, червячные.
Цепные передачи состоят из ведущей и ведомой звездочек, охватываемых бесконечной цепью. Они применяются для передачи момента вращения между параллельными валами, находящимися на значительном расстоянии. В отличие от ременных цепные передачи могут передавать значительно большую мощность.
Передаточное число цепной передачи определяется как отношение числа зубьев ведомой звездочки к числу зубьев ведущей звездочки. Звездочки цепных передач по конструкции напоминают зубчатые колеса, но имеют другой профиль зубцов. Цепи бывают втулочные, роликовые и зубчатые. Для нормальной работы передачи цепи должны иметь предварительное натяжение. В процессе эксплуатации они требуют периодической смазки.
2. Плоская система сил
Частный случай общей поставки задачи.
Пусть все действующие силы лежат в одной плоскости – например, листа. Выберем за центр приведения точку О – в этой же плоскости. Получим результирующую силу и результирующую пару в этой же плоскости, то есть
Распределение напряжений при кручении
Деформация кручения возникает, как было отмечено ранее, при действии на брус нагрузок, создающих противоположные пары сил в плоскостях, перпендикулярных продольной оси бруса. Так как при этом прямолинейные образующие круглого бруса принимают вид винтовых линий (это легко наблюдать на резиновом стержне), то можно предположить, что при кручении каждое поперечное сечение по отношению к соседнему поворачивается на некоторый угол. Можно также представить, что брус сложен из множества тончайших дисков; при повороте каждого из них на стыке с соседним происходят перемещения точек в плоскостях, перпендикулярных оси бруса. Вывод таков: при кручении бруса в каждом сечении происходит деформация сдвига и возникают касательные напряжения. Однако, если при сдвиге все точки деформируемого сечения прямолинейно смещались на равные расстояния, то при кручении материал в разных точках, находящихся на разных расстояниях от оси бруса, испытывает разные деформации. Чем дальше точка удалена от оси, тем больше перемещение по дуге. Но так как по закону Гука напряжения прямо пропорциональны относительной деформации, то очевидно, что и напряжения в различных точках одного и того же сечения будут различны и прямо пропорциональны расстоянию точки от центра сечения, называемого полюсом. В точке сечения, совпадающей с полюсом, напряжение будет равно нулю, а наибольшие напряжения тmax возникают в наиболее удаленных от полюса точках, расположенных на поверхности бруса. Таким образом, первое различие деформаций кручения и сдвига заключается в различных законах распределения напряжений по сечению. Второе различие состоит в том, что использование метода сечений при сдвиге позволяет выявить равнодействующую внутренних сил (поперечную силу Q), а при кручении тот же метод приводит к обнаружению равнодействующей пары сил, создающей внутренний крутящий момент Т. Оба различия деформаций необходимо иметь в виду при определении действительных напряжений при кручении. Вывод расчетной формулы для определения действительных напряжений в опасных точках сечения скручиваемого бруса (тmах) достаточно сложен и требует большого числа математических преобразований, но основывается он на известных положениях. Их последовательность, соответствующая порядку действий при математических преобразованиях, такова. В любом сечении скручиваемого бруса должен действовать внутренний крутящий момент сил упругости, равный внешнему вращающему моменту и возникающий следующим образом: в каждой точке деформируемого сечения действует касательное напряжение, по закону Гука прямо пропорциональное относительной деформации; если предположить, что в окрестностях точки, т. е. на очень маленькой площадке, это напряжение остается неизменным, то это равносильно тому, что в сечении действуют элементарные касательные внутренние силы, каждая из которых создает относительно оси бруса (полюса сечения) элементарный внутренний момент: сумма этих элементарных моментов и является внутренним крутящим моментом. Соответствующие приведенным рассуждениям математические преобразования (при условии, что брус имел круглое поперечное сечение диаметром d) приводят к формуле тmax = T/(п * d^3 / 16) Выражение (пd^3)/16 называют полярным моментом сопротивления сечения кручению и обозначают Wp (размерность — м3, см3 или мм3). Для практических расчетов можно принять, что пd^3/16
Расчеты на прочность
Типовой деталью, испытывающей деформацию кручения, является вал. При проектном расчете его на прочность надо по предварительно выявленному крутящему моменту и допускаемому напряжению определить необходимый диаметр вала. Исходной является зависимость, в которой, как обычно, в качестве максимальных действительных напряжений используются допускаемые напряжения. Так как для валов многих машин бывает известен не внешний момент, а передаваемая мощность Р (Вт) и угловая скорость w (1/с) или частота вращения n (об/мин или об/с) вала, то прежде всего определяют внешний вращающий момент. Если числовая величина n дана в об/мин, то w = пn/30, если в об/с, то w = 2пn. При проверочном расчете, как и в случаях других деформаций, определяют действительные напряжения и сравнивают их с допускаемыми. Прочность будет обеспечена, если соблюдается условие тк = T/(0,2d^3)
Как устроен автомобиль: схема, принцип работы и особенности
Первый в мире автомобиль с бензиновым мотором был запатентован еще в далеком 1885 году гениальным немецким инженером Карлом Бенцом. Поразительно, но и в наши дни машина состоит из тех же основных частей, что и сто лет назад – это кузов, шасси и двигатель. Давайте подробнее рассмотрим из чего состоит автомобиль и его основные части.
В одной небольшой статье сложно, конечно, описать подробное устройство автомобиля, поэтому мы рассмотрим лишь основы, которые должен знать каждый автолюбитель.
В конце этого учебного материала вы найдете небольшой видео-урок об устройстве автомобиля с описанием основных частей, из которых он состоит, и их функций.
Также стоит отметить, что незнание общего устройства автомобиля и принципа работы его основных узлов и агрегатов, ведет к повышенным расходам на ремонт машины и её техническое обслуживание.
Общее устройство автомобиля
Конструкция автомобиля не так уж и сложна, как может показаться на первый взгляд. Совершенно любое транспортное средство состоит из пяти основных частей – мотор, ходовая часть, трансмиссия, кузов, электрооборудование и система управления.
Мотор
Двигатель – сердце автомобиля, задачей которого является преобразование тепловой энергии (сгоревшего топлива) в энергию механическую. После чего она передается через трансмиссию на колеса.
Ходовая часть
Множественные узлы и агрегаты, заставляющие автомобиль двигаться, относят к ходовой части – мосты, колеса и подвеска (задняя и передняя).
Трансмиссия
Основные составляющие трансмиссии:
Задачей трансмиссии является передача крутящего момента на колеса машины с вала двигателя.
Электрооборудование и система управления
Механизм управления автотранспортным средством представлен рулем, связанным с передними колесами. С помощью руля определяется угол поворота и направление движения автомобиля. Тормоза – еще одна важная составляющая системы управления ТС, отвечающая за снижение его скорости и полной остановки.
Кузов
Практически все агрегаты и узлы крепятся к несущей части автомобиля – кузову.
Это разделение весьма условно, поскольку все детали в автомобиле, так или иначе, взаимосвязаны.
Конструкция ТС постоянно совершенствуется, все больше начиняется электроникой, автоматикой. Производители работают над повышением безопасности эксплуатации ТС, топливной экономичности, снижением уровня шума и токсичности выхлопных газов.
Трансмиссия
Связующее звено между двигателем и колёсами называется трансмиссией. Этот незаменимый проводник выполняет несколько функций в автомобиле:
Современные трансмиссии бывают разного типа: классические, электрические, гидрообъёмные, гибридные. Конструкция включает ведущий и зависимый мосты. Различают передний, задний или полный привод на все четыре колеса.
Принцип действия зажигания
Совокупность приборов, отвечающая за появление искры в необходимый момент, именуется системой зажигания и является частью электрооборудования. Нормальная работа бензинового двигателя невозможна без системы зажигания. Выделяют три основных вида систем зажигания, схожих по принципу действия, но различающихся по конструкции.
Устройство системы зажигания
Когда машину заводят, источником питания выступает аккумулятор, после, эта функция передается генератору (во время работы двигателя).
Устройство, использующееся для передачи напряжения.
Устройство необходимое для накопления необходимой энергии. Бывают индукционные (в виде катушки) и емкостные накопители.
Система представляет собой блок и коммутатор. Распределитель может быть электронным либо механическим. Отвечает за подачу энергии.
Фарфоровый изолятор с двумя электродами, расположенными близко друг с другом. Отвечает за создание искры для воспламенения.
Основные этапы работы зажигания:
Типы независимых подвесок
Модель подвески | Описание |
McPherson | Самая распространенная подвеска передней оси современных автомобилей. Недорогая в производстве и ремонте, проста в конструкции, надежна. Из недостаков можно выделить среднюю управляемость. |
Двухрычажная передняя подвеска | Более эффективная и сложная конструкция. Устанавливается спереди и сзади, Подобная схема подвески обеспечивает лучшую управляемость автомобиля. |
Пневматическая подвеска | Используется на автомобилях класса люкс. Также возможно установить за доплату у дилера. Роль пружин в этой подвеске выполняют пневмобаллоны со сжатым воздухом. |
Гидравлическая подвеска | Даёт возможность регулировать жесткость и высоту дорожного просвета. При наличии в автомобиле управляющей электроники, а также функции адаптивной подвески она самостоятельно подстраивается под условия дороги и вождения. |
Винтовая подвеска, или койловеры | Амортизационные стойки с возможностью настройки жесткости прямо на автомобиле. Благодаря резьбовому соединению нижнего упора пружины можно регулировать ее высоту, а также величину дорожного просвета. |
Подвески типа push-rod и pull-rod | Данные устройства разрабатывались для гоночных автомобилей с открытыми колесами. В основе — двухрычажная схема. Такая конструкция снижает центр тяжести и обеспечивает лучшую устойчивость автомобиля. Подвеска pull-rod имеет более низкий центр тяжести, чем push-rod. Однако на практике их общая эффективность примерно одинакова. |
Если у вас возникли вопросы — оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них
Принцип действия двигателя
Сейчас в большинстве автомобилей используется четырехтактная система сгорания для преобразования топлива в энергию. Для правильно работы двигателя компрессия в цилиндрах должна соответствовать значениям от 11 до 15.
Внутри цилиндра двигателя расположена камера, в которую вводится смесь с воздухом (либо по отдельности), где и происходит сгорание топлива. При сгорании тепловая энергия преобразуется в механическую энергию. После, продукты сгорания выводятся из цилиндра, а на их место поступает новая порция топлива. Совокупность этих процессов является циклом работы двигателя.
Автоматическая КПП
Новый вид трансмиссии, которая бывает нескольких типов:
Автоматическая коробка позволяет максимально плавно переключать скорости, сохраняя целостность сцепления длительное время. За счёт этого АКПП может адаптироваться под разный стиль вождения. А варианты с возможностью ручного переключения дают машине отличную динамику.
Устройство автомата довольно сложное. Состоит он из гидроблока, планетарных механизмов, фрикционов и других, не менее важных элементов. Особые функции здесь выполняют разнообразные датчики.
Управление автоматической коробкой осуществляется посредством селектора. Рабочие режимы зависят от выбранного положения: P, N, R, D. На внедорожниках с большим числом диапазонов работы используются дополнительные режимы: S, L, OFF и т. д. Также имеются отдельные кнопки типа Snow, Shift, Sport. Они характеризуют работу автомата в зависимости от внешних условий.
Принцип действия сцепления
Связующее звено между КПП и двигателем, подключающее и отключающее первичный вал коробки от маховика коленчатого вала называется сцеплением. На механике передачи переключаются только, когда сцепление выжато.
Конструкция узла сцепления:
По количеству ведомых дисков сцепление делится на однодисковые и многодисковые.
В однодисковом варианте корзина находится в связке с маховиком и вращается с ним. Все вращение передается на коробку передач, поскольку в ведомом диске находится шлицевая муфта, в которую входит вал КПП. Для переключения передачи водитель жмет на педаль, чем запускает следующие процессы:
Когда водитель отпускает педаль, подшипник отделяется от пружин и корзина сцепляется с маховиком.
В двухдисковых вариантах используется корзина, имеющая две рабочие поверхности и два диска сцепления. Ограничительные втулки и система регулировки синхронного нажатия расположены между рабочими поверхностями ведущего диска. Процесс отсоединения маховика происходит, как и в однодисковом сцеплении.
Механическая КПП
Механизм для ступенчатого изменения передаточного числа. Выбор скорости на МКПП осуществляется вручную, водителем автомобиля. Основная функциональная составляющая такой коробки реализуется за счёт механических устройств, поэтому она так и названа.
Различают двухвальные и трёхвальные коробки. Здесь есть главный, второстепенный и промежуточный валы. Для безударного и комфортного переключения скоростей предусмотрены синхронизаторы. Образец двухвальной КПП установлен на Ваз 2104, 2105, 2109.
Наклонная плоскость.
Наклонная плоскость применяется для перемещения тяжелых предметов на более высокий уровень без их непосредственного поднятия. К таким устройствам относятся пандусы, эскалаторы, обычные лестницы, а также конвейеры (с роликами для уменьшения трения).
Идеальный выигрыш в силе, обеспечиваемый наклонной плоскостью (рис. 5), равен отношению расстояния, на которое перемещается нагрузка, к расстоянию, проходимому точкой приложения усилия. Первое есть длина наклонной плоскости, а второе – высота, на которую поднимается груз. Поскольку гипотенуза больше катета, наклонная плоскость всегда дает выигрыш в силе. Выигрыш тем больше, чем меньше наклон плоскости. Этим объясняется то, что горные автомобильные и железные дороги имеют вид серпантина: чем меньше крутизна дороги, тем легче по ней подниматься.
Идеальный выигрыш в силе, даваемый клином, равен отношению его длины к толщине на тупом конце. Реальный выигрыш клина, в отличие от других простейших механизмов, трудно определить. Сопротивление, встречаемое им, непредсказуемо меняется для разных участков его «щек». Из-за большого трения его КПД столь мал, что идеальный выигрыш не имеет особого значения.
Рычаг.
Это жесткий стержень, который может свободно поворачиваться относительно неподвижной точки, называемой точкой опоры. Примером рычага могут служить лом, молоток с расщепом, тачка, метла.
Рычаги бывают трех родов, различающихся взаимным расположением точек приложения нагрузки и усилия и точки опоры (рис. 1). Идеальный выигрыш в силе рычага равен отношению расстояния DE
от точки приложения усилия до точки опоры к расстоянию
DL
от точки приложения нагрузки до точки опоры. Для рычага I рода расстояние
DE
обычно больше
DL
, а поэтому идеальный выигрыш в силе больше 1. Для рычага II рода идеальный выигрыш в силе тоже больше единицы. Что же касается рычага III рода, то величина
DE
для него меньше
DL
, а стало быть, больше единицы выигрыш в скорости.
Ходовая часть
ХЧ – это, собственно говоря, колеса автомобиля, элементы подвески колес и рулевое управление.
Дорога никогда не бывает абсолютно ровной. Поэтому колеса крепятся к кузову с помощью упругих элементов – рессор или пружин, которые смягчают удары на кузов при неровностях на дороге.
Колебания, возникающие в этих элементах, гасят амортизаторы. Устойчивость колес относительно кузова обеспечивает специальная система рычагов-стабилизаторов. Задачей рулевого управления в автомобиле становится изменение траектории движения авто на дороге. Состоит из рулевого колеса, рулевой колонки и системы рулевых тяг. Тяги и поворачиваю управляемые колеса при вращении рулевого колеса.
Электрическое оборудование
Чтобы двигатель работал исправно, требуется электричество. Для этого в конструкции имеется аккумулятор. Но он не может долго выдавать нужный ток для всех потребителей. В паре с аккумулятором работает генератор. Давайте узнаем, как устроен генератор автомобиля.
Итак, что это такое? Генератор – это источник электрической энергии для всех потребителей. Работает после запуска двигателя, а также заряжает аккумулятор. Любые генераторы представляют собой статор и обмотку, первый зажат между двумя крышками. На последней имеет щеточный узел. Крышки стягиваются винтами. Также имеется и ротор, который вращается внутри статора. При вращении генерируется электрический переменный ток. Он выпрямляется посредством специального блока. Имеется регулятор напряжения – он стабилизирует перепады тока при работе генератора.
Система охлаждения
Двигатель разогревается до высоких температур, а перегрев для мотора очень страшен. Для этого существует система охлаждения, один из элементов которой – радиатор. Что он собой являет? Давайте рассмотрим, как устроен радиатор охлаждения автомобиля. Зачастую, он имеет несколько секций, сердцевину, а также детали крепления. Жидкость, которая поступает из рубашек охлаждения двигателя, должна охлаждаться в радиаторе. Сердцевина – это тонкие пластины, через которые идут плоские вертикальные трубы. Они припаяны к пластинам. Жидкость проходящая через сердцевину и трубки, интенсивно охлаждается.
Холодный поток поступает обратно в рубашку двигателя, забирая лишнее тепло. При помощи вентилятора, радиатор может охлаждаться принудительно. Данный элемент может быть электрическим, либо иметь привод от вискомуфты. В первом случае работают датчики, во втором частота вращения лопастей корректируется самой механической муфтой.
Тормозная система
Рассмотрим, как устроена тормозная система автомобиля. Она представляет собой комплекс из колодок, барабанов, а также дисков и гидравлических цилиндров. Существует два типа тормозных систем – рабочая, которая предназначенная для полной остановки, и стояночная. Последняя необходима для удерживания машины на сложных участках.
В современных автомобилях тормоза представляют собой механизм с гидравлическим приводом. За счет избыточного давления при нажатии на педаль срабатывает тормозной механизм – колодки с большим усилием трутся об диск и машина останавливается.
Зубчатые колеса.
Система двух находящихся в зацеплении зубчатых колес, сидящих на валах одинакового диаметра (рис. 4), в какой-то мере аналогична дифференциальному вороту (см. также
ЗУБЧАТАЯ ПЕРЕДАЧА). Скорость вращения колес обратно пропорциональна их диаметру. Если малая ведущая шестерня
A
(к которой приложено усилие) по диаметру вдвое меньше большого зубчатого колеса
B
, то она должна вращаться вдвое быстрее. Таким образом, выигрыш в силе такой зубчатой передачи равен 2. Но если точки приложения усилия и нагрузки поменять местами, так что колесо
B
станет ведущим, то выигрыш в силе будет равен 1/2, а выигрыш в скорости – 2.
Автомобильный кузов
Основа конструкции любого авто, что определяет его форму, размер, потенциальные скоростные характеристики – кузов. Он нумеруется на заводе при изготовлении, этот номер в определенном месте наносится на кузов методом теснения. Номер кузова, как и заводской номер автомобиля, являются основными в сопроводительных документах на автомобиль, а так же вносятся в регистрационный документ при регистрации в органах ГАИ.
Кузов изготавливается из специальных сортов листовой стали. Он должен обладать достаточной прочностью и жесткостью, чтобы не потерять форму при воздействии довольно значительных механических воздействий. В необходимых местах кузов имеет элементы усиления конструкции из более толстого металла.
Кроме того, металл кузова должен быть достаточно устойчивым против коррозии. На заводе кузов проходит специальную химическую обработку против следов коррозии. После этого он грунтуется специальной грунтовкой и красится высокопрочной автоэмалью. От качества выполнения этих работ, а также надлежащего ухода зависит срок службы кузова, а, следовательно, и всего автомобиля. К элементам кузова относятся двери, крышка моторного отделения и крышка багажника, а еще – остекление автомобиля.