чем отличие гипобиоза и криптобиоза
Чем отличие гипобиоза и криптобиоза
Нина Михайловна Чернова, Александра Михайловна Былова
Данному учебнику предшествовало два издания учебного пособия по экологии, написанного авторами для студентов биологических факультетов педвузов и широко апробированного в учебных заведениях страны начиная с 1980 г.
В основу положены курсы лекций, читаемых в разных вариантах в Московском педагогическом государственном университете. Программы, отвечающие проблематике общей экологии, были введены в вузы с конца 60-х годов XX в., и тогда остро ощущался недостаток учебной литературы по этой дисциплине. Прикладные вопросы экологии излагались студентам в курсе «Охрана природы», который был введен значительно раньше и был уже достаточно обеспечен учебниками. Поэтому перед авторами стояло несколько задач: 1) отобрать материалы, необходимые и достаточные для ознакомления студентов с наиболее фундаментальными основами данной научной области; 2) связать их с тем кругом знаний о живой и неживой природе, которые обеспечиваются программами смежных курсов (ботаники, зоологии, физиологии и др., в том числе и курсом «Охрана природы»); 3) сделать изложение достаточно популярным и доступным широкому кругу читателей, имея в виду именно ориентацию на профессию учителя.
Общая концепция предмета и отдельные вопросы широко обсуждались с коллегами – преподавателями многих других педвузов страны на ежегодных четырехмесячных курсах по повышению квалификации в области экологии, введенных при МПГУ (тогда МГПИ) с 1975 г. Авторы надеются, что частично выполнили поставленные задачи, так как два последовательных издания «Экологии» (М.: Просвещение, 1980, 1988), выпущенные достаточно большим тиражом (в сумме около 100 тыс. экземпляров), разошлись по стране и во многих педвузах в течение более двух десятилетий служили одним из основных учебных пособий по данной дисциплине. Книга оказалась полезной также школьным учителям и ряду других специалистов.
За прошедшие десятилетия положение с учебной литературой по экологии сильно изменилось. Появился ряд фундаментальных переводных сводок, а также широкий спектр отечественных изданий, предназначенных для разных категорий учебных заведений. В большинстве из них экология принимается в ее расширительном современном значении – не только как наука об основных законах связей и устойчивости живой природы в окружающей среде, но и как вся сфера экологических проблем человечества во всех без исключения областях жизни, включая социальные. При таком широком подходе и при обилии учебных изданий, большая часть которых имеет компилятивный или специальный характер, вновь возникают затруднения с отбором необходимой и достаточной информации для систематизированной и экологически грамотной подготовки учителя. Изменились и учебные планы педвузов. В соответствии с вновь принятыми государственными стандартами для биологических факультетов они включают теперь, кроме общей экологии, отдельные курсы по социальной экологии и рациональному природопользованию. Таким образом, появилась возможность более глубоко и систематизированно обсуждать и научные, и прикладные вопросы в этой области знаний, включая методические проблемы экологического образования. Этому служат также различные факультативы и спецкурсы, разработанные во многих педвузах. Однако проблема учебника по основополагающему курсу общей экологии по-прежнему остается актуальной, так как он должен соответствовать действующим программам и быть ориентированным на специфику естественнонаучной и профессиональной подготовки учителей биологии. Переводные сводки служат превосходными справочниками, но не подходят для сжатого освоения курса. Среди отечественных изданий наиболее близкими по объему информации являются недавно появившиеся учебники по экологии академика И. А. Шилова (М.: Высшая школа, 1997) и профессора Н. К. Христофоровой (Владивосток: Дальнаука, 1999). Оба эти хорошие пособия ориентированы, однако, на классические университеты, готовящие биологов-исследователей, в связи с чем имеют соответствующую структуру и стиль научных обзоров. Необходимость специального и популярного издания для экологической подготовки учителей-биологов остается.
Подготавливая издание настоящей книги как учебника по общей экологии, авторы не ставили перед собой задачу полной переработки содержания. Фундаментальные положения любой естественной науки не устаревают, однако новые знания меняют аспекты рассмотрения отдельных проблем, расширяют и углубляют систему взглядов. Поэтому в текст внесен ряд дополнений, а некоторые разделы написаны заново. Значительно перестроена структура книги, и почти вдвое увеличен иллюстративный материал. Авторы постарались учесть все отклики и пожелания на предшествующие издания и искренне благодарны всем, кто принял участие в их обсуждении. Надеемся также на ответную реакцию читателей и на настоящий учебник. Выражаем признательность своим коллегам, с которыми обсуждались многие вопросы данного и смежных курсов: профессорам Н. И. Шориной, В. М. Константинову, В. М. Галушину, И. Х. Шаровой, Н. А. Кузнецовой, доцентам И. А. Жигареву, В. Т. Бутьеву, М. Е. Черняховскому.
Авторы надеются, что учебник будет полезен не только студентам биологических факультетов педвузов, но и широкому кругу учителей, а также представителям других специальностей, интересующимся научными основами экологии и занимающимся популяризацией знаний.
Глава 1. КРАТКАЯ ИСТОРИЯ ЭКОЛОГИИ
Экология – это наука о связях, поддерживающих устойчивость жизни в окружающей среде. Жизнь – самое сложное явление в окружающем нас мире. Ее изучает множество наук, складывающихся в совокупности в дифференцированную и многоплановую систему биологии. Однако и достижения многих других, не биологических наук (например, механики, оптики, коллоидной химии, физической географии и т. д.) вносят свой вклад в понимание жизни. Экология в этой многоликой системе знания о природе занимает свое, особое место. В центре ее внимания не только биологические объекты, но и те условия, которые необходимы для их существования. Поэтому экология, имея корни в биологии, вторгается и в другие области знания, пытаясь постичь законы взаимодействия живых и неживых систем. Как отдельная наука экология начала оформляться всего около полутора столетий назад и прошла бурный путь развития, в течение которого способствовала формированию представлений о сложности и вместе с тем упорядоченности организации жизни на Земле.
Представления о том, что живые существа не только реагируют на изменения окружающей среды, но и материально взаимодействуют с ней, сформировались еще в глубокой древности. Естественно, что в разные времена суть этих взглядов была различной. «Текут наши тела, как ручьи, и материя вечно обновляется в них, как вода в потоке», – писал древнегреческий философ Гераклит. «Жизнь – это вихрь, – утверждал известный зоолог начала XIX столетия Ж. Кювье, – направление которого постоянно и который увлекает всегда молекулы того же сорта, но где индивидуальные молекулы входят и постоянно выходят таким образом, что форма живого тела для него более существенна, чем материя».
В науке прочно утвердилось представление, что обмен веществ является одной из самых фундаментальных характеристик жизни. С философской точки зрения живые организмы относятся к так называемым открытым системам, которые поддерживают себя за счет потоков вещества и энергии из окружающей среды. На вопрос о значимости обмена веществ для живой природы впервые попытался ответить в середине прошлого столетия известный физик Э. Шредингер. Он показал, что таким образом организмы компенсируют увеличение энтропии (т. е. перехода молекул тела в хаотическое состояние за счет теплового движения), поддерживая упорядоченность своей организации, и тем самым противостоят смерти.
Другие фундаментальные свойства жизни, относящиеся к связям с окружающей средой, – это способность к отражению и адаптациям, т. е. реакции на изменение условий и возможность подстраивания к ним в определенных рамках. В этих реакциях большое значение имеют не только материально-энергетические, но и информационные потоки. Таким образом, связи, поддерживающие жизнь на Земле, не случайно оказались объектом внимания отдельной науки – экологии.
Глава 2. Организм и среда. Общие закономерности
2.5. Активная и скрытая жизнь
Обмен веществ – одно из главнейших свойств жизни, определяющее тесную вещественно-энергетическую связь организмов со средой. Метаболизм проявляет сильную зависимость от условий существования. В природе мы наблюдаем два основных состояния жизни: активную жизнедеятельность и покой. При активной жизнедеятельности организмы питаются, растут, передвигаются, развиваются, размножаются, характеризуясь при этом интенсивным метаболизмом. Покой может быть разным по глубине и продолжительности, многие функции организма при этом ослабевают или не выполняются совсем, так как уровень обмена веществ падает под влиянием внешних и внутренних факторов.
В состоянии глубокого покоя, т. е. пониженного вещественно-энергетического обмена, организмы становятся менее зависимыми от среды, приобретают высокую степень устойчивости и способны переносить условия, которые не могли бы выдержать при активной жизнедеятельности. Эти два состояния чередуются в жизни многих видов, являясь адаптацией к местообитаниям с нестабильным климатом, резкими сезонными изменениями, что характерно для большей части планеты.
При глубоком подавлении обмена веществ организмы могут вообще не проявлять видимых признаков жизни. Вопрос о том, возможна ли полная остановка обмена веществ с последующим возвращением к активной жизнедеятельности, т. е. своего рода «воскрешение из мертвых», дискутировался в науке более двух столетий.
Впервые явление мнимой смерти было обнаружено в 1702 г. Антони ван Левенгуком – открывателем микроскопического мира живых существ. Наблюдаемые им «анималькули» (коловратки) при высыхании капли воды сморщивались, выглядели мертвыми и могли пребывать в таком состоянии длительное время (рис. 8). Помещенные вновь в воду, они набухали и переходили к активной жизни. Левенгук объяснил это явление тем, что оболочка «анималькулей», очевидно, «не позволяет ни малейшего испарения» и они остаются живыми в сухих условиях. Однако через несколько десятилетий естествоиспытатели уже спорили о возможности того, что «жизнь может быть полностью прекращена» и восстановлена вновь «через 20, 40, 100 лет или более».
В 70-х годах XVIII в. явление «воскрешения» после высыхания было обнаружено и подтверждено многочисленными опытами у ряда других мелких организмов – пшеничных угриц, свободноживущих нематод и тихоходок. Ж. Бюффон, повторив опыты Дж. Нидгема с угрицами, утверждал, что «эти организмы можно заставить сколько угодно раз подряд умирать и вновь оживать». Л. Спалланцани впервые обратил внимание на глубокий покой семян и спор растений, расценив его как сохранение их во времени.
Рис. 8. Коловратка Philidina roseola на разных стадиях высыхания (по П. Ю. Шмидту, 1948):
1– активная; 2 – начинающая сокращаться; 3 – полностью сократившаяся перед высыханием; 4 – в состоянии анабиоза
В середине XIX в. было убедительно установлено, что устойчивость сухих коловраток, тихоходок и нематод к высоким и низким температурам, недостатку или отсутствию кислорода возрастает пропорционально степени их обезвоживания. Однако оставался открытым вопрос, происходит ли при этом полное прерывание жизни или лишь ее глубокое угнетение. В 1878 г. Клод Бернал выдвинул понятие «скрытая жизнь», которую он характеризовал прекращением обмена веществ и «перерывом отношений между существом и средой».
Окончательно этот вопрос был решен лишь в первой трети XX столетия с развитием техники глубокого вакуумного обезвоживания. Опыты Г. Рама, П. Беккереля и других ученых показали возможность полной обратимой остановки жизни. В сухом состоянии, когда в клетках оставалось не более 2 % воды в химически связанном виде, такие организмы, как коловратки, тихоходки, мелкие нематоды, семена и споры растений, споры бактерий и грибов выдерживали пребывание в жидком кислороде (-218,4 °C), жидком водороде (-259,4 °C), жидком гелии (-269,0 °C), т. е. температуры, близкие к абсолютному нулю. При этом содержимое клеток затвердевает, отсутствует даже тепловое движение молекул, и всякий обмен веществ, естественно, прекращен. После помещения в нормальные условия эти организмы продолжают развитие. У некоторых видов остановка обмена веществ при сверхнизких температурах возможна и без высушивания, при условии замерзания воды не в кристаллическом, а в аморфном состоянии.
Полная временная остановка жизни получила название анабиоза. Термин был предложен В. Прейером еще в 1891 г. В состоянии анабиоза организмы становятся устойчивыми к самым разнообразным воздействиям. Например, тихоходки выдерживали в эксперименте ионизирующее облучение до 570 тыс. рентген в течение 24 ч. Обезвоженные личинки одного из африканских комаров-хирономусов – Polypodium vanderplanki – сохраняют способность оживать после воздействия температуры в +102 °C.
Состояние анабиоза намного расширяет границы сохранения жизни, в том числе и во времени. Например, в толще ледника Антарктиды при глубоком бурении были обнаружены микроорганизмы (споры бактерий, грибов и дрожжей), развившиеся впоследствии на обычных питательных средах. Возраст соответствующих горизонтов льда достигает 10–13 тыс. лет. Споры некоторых жизнеспособных бактерий выделены и из более глубоких слоев возрастом в сотни тысяч лет.
Анабиоз, однако, – достаточно редкое явление. Он возможен далеко не для всех видов и является крайним состоянием покоя в живой природе. Его необходимое условие – сохранение неповрежденными тонких внутриклеточных структур (органелл и мембран) при высушивании или глубоком охлаждении организмов. Это условие невыполнимо для большинства видов, имеющих сложную организацию клеток, тканей и органов.
Способность к анабиозу обнаруживается у видов, имеющих простое или упрощенное строение и обитающих в условиях резкого колебания влажности (пересыхающие мелкие водоемы, верхние слои почвы, подушки мхов и лишайников и т. п.).
Гораздо шире распространены в природе другие формы покоя, связанные с состоянием пониженной жизнедеятельности в результате частичного угнетения метаболизма. Любая степень снижения уровня обмена веществ повышает устойчивость организмов и позволяет более экономно тратить энергию.
Формы покоя в состоянии пониженной жизнедеятельности делят на гипобиоз и криптобиоз, или покой вынужденный и покой физиологический. При гипобиозе торможение активности, или оцепенение, возникает под прямым давлением неблагоприятных условий и прекращается почти сразу после того, как эти условия возвращаются к норме (рис. 9). Подобное подавление процессов жизнедеятельности может возникать при недостатке тепла, воды, кислорода, при повышении осмотического давления и т. п. В соответствии с ведущим внешним фактором вынужденного покоя различают криобиоз (при низких температурах), ангидробиоз (при недостатке воды), аноксибиоз (в анаэробных условиях), гиперосмобиоз (при высоком содержании солей в воде) и др.
Рис. 9. Пагон – кусок льда со вмерзшими в него пресноводными обитателями (из С. А. Зернова, 1949)
Глубина и продолжительность подавления обмена веществ при гипобиозе зависит от длительности и интенсивности действия угнетающего фактора. Вынужденный покой наступает на любой стадии онтогенеза. Выгоды гипобиоза – быстрое восстановление активной жизнедеятельности. Однако это относительно неустойчивое состояние организмов и при большой длительности может быть повреждающим из-за разбалансированности метаболических процессов, истощения энергетических ресурсов, накопления недоокисленных продуктов обмена и других неблагоприятных физиологических изменений.
Криптобиоз – принципиально другой тип покоя. Он связан с комплексом эндогенных физиологических перестроек, которые происходят заблаговременно, до наступления неблагоприятных сезонных изменений, и организмы оказываются к ним готовы. Криптобиоз является адаптацией прежде всего к сезонной или иной периодичности абиотических факторов внешней среды, их регулярной цикличности. Он составляет часть жизненного цикла организмов, возникает не на любой, а на определенной стадии индивидуального развития, приуроченной к переживанию критических периодов года.
Переход в состояние физиологического покоя требует времени. Ему предшествует накопление резервных веществ, частичная дегидратация тканей и органов, уменьшение интенсивности окислительных процессов и ряд других изменений, понижающих в целом тканевый метаболизм. В состоянии криптобиоза организмы становятся во много раз более устойчивыми к неблагоприятным воздействиям внешней среды (рис. 10). Основные биохимические перестройки при этом являются во многом общими для растений, животных и микроорганизмов (например, переключение метаболизма в разной степени на путь гликолиза за счет резервных углеводов и т. п.). Выход из криптобиоза также требует времени и затрат энергии и не может быть осуществлен простым прекращением отрицательного действия фактора. Для этого необходимы особые условия, различные для разных видов (например, промораживание, присутствие капельно-жидкой воды, определенная продолжительность светового дня, определенное качество света, обязательные колебания температуры и др.).
Криптобиоз как стратегия выживания в периодически неблагоприятных для активной жизни условиях – это продукт длительной эволюции и естественного отбора. Он широко распространен в живой природе. Состояние криптобиоза характерно, например, для семян растений, цист и спор различных микроорганизмов, грибов, водорослей. Диапауза членистоногих, спячка млекопитающих, глубокий покой растений – также различные типы криптобиоза.
Рис. 10. Дождевой червь в состоянии диапаузы (по В. Тишлеру, 1971)
Состояния гипобиоза, криптобиоза и анабиоза обеспечивают выживание видов в природных условиях разных широт, часто экстремальных, позволяют сохранять организмы в течение длительных неблагоприятных периодов, расселяться в пространстве и во многом раздвигают границы возможности и распространения жизни в целом.
Чем отличие гипобиоза и криптобиоза
Формы покоя в состоянии пониженной жизнедеятельности делят на гипобиоз и криптобиоз, или покой вынужденный и покой физиологический. При гипобиозе торможение активности, или оцепенение, возникает под прямым давлением неблагоприятных условий и прекращается почти сразу после того, как эти условия возвращаются к норме (рис. 9). Подобное подавление процессов жизнедеятельности может возникать при недостатке тепла, воды, кислорода, при повышении осмотического давления и т. п. В соответствии с ведущим внешним фактором вынужденного покоя различают криобиоз (при низких температурах), ангидробиоз (при недостатке воды), аноксибиоз (в анаэробных условиях), гиперосмобиоз (при высоком содержании солей в воде) и др.
Рис. 9. Пагон – кусок льда со вмерзшими в него пресноводными обитателями (из С. А. Зернова, 1949)
Глубина и продолжительность подавления обмена веществ при гипобиозе зависит от длительности и интенсивности действия угнетающего фактора. Вынужденный покой наступает на любой стадии онтогенеза. Выгоды гипобиоза – быстрое восстановление активной жизнедеятельности. Однако это относительно неустойчивое состояние организмов и при большой длительности может быть повреждающим из-за разбалансированности метаболических процессов, истощения энергетических ресурсов, накопления недоокисленных продуктов обмена и других неблагоприятных физиологических изменений.
Криптобиоз – принципиально другой тип покоя. Он связан с комплексом эндогенных физиологических перестроек, которые происходят заблаговременно, до наступления неблагоприятных сезонных изменений, и организмы оказываются к ним готовы. Криптобиоз является адаптацией прежде всего к сезонной или иной периодичности абиотических факторов внешней среды, их регулярной цикличности. Он составляет часть жизненного цикла организмов, возникает не на любой, а на определенной стадии индивидуального развития, приуроченной к переживанию критических периодов года.
Переход в состояние физиологического покоя требует времени. Ему предшествует накопление резервных веществ, частичная дегидратация тканей и органов, уменьшение интенсивности окислительных процессов и ряд других изменений, понижающих в целом тканевый метаболизм. В состоянии криптобиоза организмы становятся во много раз более устойчивыми к неблагоприятным воздействиям внешней среды (рис. 10). Основные биохимические перестройки при этом являются во многом общими для растений, животных и микроорганизмов (например, переключение метаболизма в разной степени на путь гликолиза за счет резервных углеводов и т. п.). Выход из криптобиоза также требует времени и затрат энергии и не может быть осуществлен простым прекращением отрицательного действия фактора. Для этого необходимы особые условия, различные для разных видов (например, промораживание, присутствие капельно-жидкой воды, определенная продолжительность светового дня, определенное качество света, обязательные колебания температуры и др.).
Криптобиоз как стратегия выживания в периодически неблагоприятных для активной жизни условиях – это продукт длительной эволюции и естественного отбора. Он широко распространен в живой природе. Состояние криптобиоза характерно, например, для семян растений, цист и спор различных микроорганизмов, грибов, водорослей. Диапауза членистоногих, спячка млекопитающих, глубокий покой растений – также различные типы криптобиоза.
Рис. 10. Дождевой червь в состоянии диапаузы (по В. Тишлеру, 1971)
Состояния гипобиоза, криптобиоза и анабиоза обеспечивают выживание видов в природных условиях разных широт, часто экстремальных, позволяют сохранять организмы в течение длительных неблагоприятных периодов, расселяться в пространстве и во многом раздвигают границы возможности и распространения жизни в целом.
Глава 3. ВАЖНЕЙШИЕ АБИОТИЧЕСКИЕ ФАКТОРЫ И АДАПТАЦИИ К НИМ ОРГАНИЗМОВ
Температура отражает среднюю кинетическую скорость атомов и молекул в какой-либо системе. От температуры зависит и скорость в организме биохимических реакций, составляющих обмен веществ. Повышение температуры увеличивает количество молекул, обладающих энергией активации. Коэффициент, показывающий, во сколько раз изменяется скорость реакций при изменении температуры на 10 °C, обозначают Q10. Для большинства химических реакций величина этого коэффициента равна 2–3 (закон Вант-Гоффа). Изменения температуры приводят также к изменениям стереохимической специфичности макромолекул: третичной и четвертичной структуры белков, строения нуклеиновых кислот, организации мембран и других структур клетки. Так как величина Q10 для разных биохимических реакций различна, то изменения температуры могут сильно нарушить сбалансированность обмена веществ, если скорости сопряженных процессов изменятся различным образом. Сильное понижение температуры вызывает опасность такого замедления обмена веществ, при котором окажется невозможным осуществление основных жизненных функций организма. Критическим моментом является замерзание воды в клетках, так как появление кристалликов льда несовместимо с сохранением целостности внутриклеточных структур. Повышение температуры ведет к денатурации белков, в среднем в области около 60 °C, но рассогласование биохимических и физиологических процессов начинается раньше, уже при некотором превышении 42–43 °C. Излишнее усиление метаболизма при высоких температурах тела также может вывести организм из строя еще задолго до теплового разрушения ферментов, так как резко возрастают потребности в питательных веществах и кислороде, которые далеко не всегда могут быть удовлетворены. Таким образом, жизнь организмов в среде с низкими, высокими и колеблющимися температурами представляет сложную задачу адаптации, решаемую в ходе эволюции и индивидуального развития.
В процессе эволюции у живых организмов выработались разнообразные приспособления, позволяющие регулировать обмен веществ при изменениях температуры окружающей среды. Это достигается двумя путями: 1) различными биохимическими и физиологическими перестройками (изменение набора, концентрации и активности ферментов, обезвоживание, понижение точки замерзания растворов тела и т. д.); 2) поддержанием температуры тела на более стабильном уровне, чем температура окружающей среды, что позволяет не слишком нарушать сложившийся ход биохимических реакций.
3.1.1. Температурные границы существования видов
В среднем активная жизнедеятельность организмов требует довольно узкого диапазона температур, ограниченного критическими порогами замерзания воды и тепловой денатурации белков, примерно в пределах от 0 до +50 °C.Границы оптимальных температур соответственно должны быть еще более узкими. Однако реально эти границы преодолеваются в природе у многих видов за счет специфических адаптаций. Существуют экологические группы организмов, оптимум которых сдвинут в сторону низких или высоких температур.