чем принято определять поколение эвм
Что такое ЭВМ? Поколения ЭВМ.
Каждый из нас слышал такой термин, как ЭВМ. Однако что это такое, точно сказать может не каждый. Также не все представляют, какую историю прошла данная техника, чтобы стать привычной для сегодняшнего пользователя.
Определение
Первое поколение
Ламповые ЭВМ стали первыми вычислительными машинами, выпуск которых начался в начале 50-х годов прошлого столетия. Примерно в то время люди начале массово узнавать, что такое ЭВМ.
В Соединенных Штатах о том, что такое ЭВМ, знали также многие. Представителем первого поколения электронных вычислительных машин стал «Эдвак». Однако он значительно уступал по параметрам отечественному компьютеру. Связано это было с тем, что БЭСМ-2 применял новые принципы построения. Советская машина могла совершать около десяти тысяч операций в секунду.
Структурно первое поколения ЭВМ было очень схожим с машиной фон Неймана. Конечно, параметры были во много раз хуже, чем у современных самых малофункциональных представителей компьютерной техники. Программы для ЭВМ первого поколения составлялись при помощи машинного кода.
Представители таких машин отличались огромными габаритами и высоким потреблением энергии. Цена машины являлась неподъемной для простых пользователей. Кроме этого, управлять ими мог только специально обученный оператор ЭВМ, так как все программы были сложны для понимания. Поэтому использовались они лишь учеными для каких-либо научно-технических задач.
Вскоре появились первые языки программирования: символическое кодирование и автокоды.
Второе поколение
В 1948 году был создан первый транзистор. Разработкой занимались физики Джон Бардин и Уильям Шокли, а также экспериментатор Уолтер Браттейн. Первые представители данного поколения ЭВМ, которые были созданы на основе транзисторов в конце 50-х годов, а к середине 60-х стали появляться компьютеры, имеющие значительно меньшие габариты.
Главной отличительной чертой транзистора является то, что он способен работать как сорок ламп, но при этом скорость у него выше. Кроме того, эти устройства требовали гораздо меньше энергии и практически не грелись. Параллельно с этим увеличивался и объем памяти для хранения информации. Благодаря стараниям ученых компьютеры получили быстродействие, равное миллиону операций в секунду.
Американским представителем является устройство ЭВМ «Атлас». Советский Союз может быть представлен машиной БЭСМ-6.
Все улучшения, произошедшие с появлением транзисторов, позволили значительно расширить сферы применения ЭВМ. Активно стали создаваться языки программирования для различных целей. Примером могут выступать фортран и кобол.
Однако по-прежнему машины страдали от нехватки памяти. Для экономии пространства стали разрабатывать операционные системы, которые позволяли более рационально распределять ресурсы.
Третье поколение
Данное поколение представлено, прежде всего, ЭВМ, которые были основаны на интегральных микросхемах. При помощи ИС удалось добиться еще большего быстродействия, уменьшить размер, увеличить надежность, а также сократить стоимость устройства.
Вскоре начали появляться первые так называемые мини-ЭВМ. Это были простые, небольшие, надежные и недорогие машинки. Первоначально они предназначались для создания контроллеров, но вскоре потребители поняли, что их можно использовать как обычные вычислительные машины. Благодаря низкой цене и простоте мини-ЭВМ появлялись практически у каждой компании разработчиков, исследователей, инженеров и так далее.
Четвертое поколение
Значительные успехи в разработках ЭВМ привели к появлению больших интегральных схем. Представляли они собой кристалл, который включал в себя тысячи электронных элементов. Благодаря низкой стоимости и неплохим параметрам ЭВМ на БИС получили огромную популярность.
В апреле 1976 года два друга разработали первый в мире персональный компьютер. Известные многим Стив Джобс и Стив Возняк трудились вечерами в гараже над созданием ПК, который впоследствии получил название Appl и обрел огромную популярность. Уже через год была создана одноименная компания, которая занялась выпуском персональных компьютеров.
Пятое поколение
Переход к пятому поколению ЭВМ произошел в конце 80-х годов с появлением микропроцессоров. Именно тогда состоялся переход к работе в оболочках и программных средах. Производительность машин выросла до 10 9 операций в секунду. Разрабатывались ЭВМ, направленные на языки высокого уровня.
Благодаря операционным системам, которые обеспечили простое управление устройством, компьютер стал незаменим практически для каждой сферы человеческой жизни.
Компьютерная грамотность с Надеждой
Заполняем пробелы — расширяем горизонты!
Пять поколений ЭВМ
Компьютерная грамотность предполагает наличие представления о пяти поколениях ЭВМ, которое Вы получите после ознакомления с данной статьей.
Когда говорят о поколениях, то в первую очередь говорят об историческом портрете электронно-вычислительных машин (ЭВМ).
Фотографии в фотоальбоме по истечении определенного срока показывают, как изменился во времени один и тот же человек. Точно так же поколения ЭВМ представляют серию портретов вычислительной техники на разных этапах ее развития.
Всю историю развития электронно-вычислительной техники принято делить на поколения. Смены поколений чаще всего были связаны со сменой элементной базы ЭВМ, с прогрессом электронной техники. Это всегда приводило к росту быстродействия и увеличению объема памяти. Кроме этого, как правило, происходили изменения в архитектуре ЭВМ, расширялся круг задач, решаемых на ЭВМ, менялся способ взаимодействия между пользователем и компьютером.
ЭВМ первого поколения
Они были ламповыми машинами 50-х годов. Их элементной базой были электровакуумные лампы. Эти ЭВМ были весьма громоздкими сооружениями, содержавшими в себе тысячи ламп, занимавшими иногда сотни квадратных метров территории, потреблявшими электроэнергию в сотни киловатт.
Например, одна из первых ЭВМ – ENIAC представляла собой огромный по объему агрегат длиной более 30 метров, содержала 18 тысяч электровакуумных ламп и потребляла около 150 киловатт электроэнергии.
Для ввода программ и данных применялись перфоленты и перфокарты. Не было монитора, клавиатуры и мышки. Использовались эти машины, главным образом, для инженерных и научных расчетов, не связанных с переработкой больших объемов данных. В 1949 году в США был создан первый полупроводниковый прибор, заменяющий электронную лампу. Он получил название транзистор.
ЭВМ второго поколения
В 60-х годах транзисторы стали элементной базой для ЭВМ второго поколения. Машины стали компактнее, надежнее, менее энергоемкими. Возросло быстродействие и объем внутренней памяти. Большое развитие получили устройства внешней (магнитной) памяти: магнитные барабаны, накопители на магнитных лентах.
В этот период стали развиваться языки программирования высокого уровня: ФОРТРАН, АЛГОЛ, КОБОЛ. Составление программы перестало зависеть от конкретной модели машины, сделалось проще, понятнее, доступнее.
В 1959 г. был изобретен метод, позволивший создавать на одной пластине и транзисторы, и все необходимые соединения между ними. Полученные таким образом схемы стали называться интегральными схемами или чипами. Изобретение интегральных схем послужило основой для дальнейшей миниатюризации компьютеров.
В дальнейшем количество транзисторов, которое удавалось разместить на единицу площади интегральной схемы, увеличивалось приблизительно вдвое каждый год.
ЭВМ третьего поколения
Это поколение ЭВМ создавалось на новой элементной базе – интегральных схемах (ИС).
ЭВМ третьего поколения начали производиться во второй половине 60-х годов, когда американская фирма IBM приступила к выпуску системы машин IBM-360. Немного позднее появились машины серии IBM-370.
В Советском Союзе в 70-х годах начался выпуск машин серии ЕС ЭВМ (Единая система ЭВМ) по образцу IBM 360/370. Скорость работы наиболее мощных моделей ЭВМ достигла уже нескольких миллионов операций в секунду. На машинах третьего поколения появился новый тип внешних запоминающих устройств – магнитные диски.
Успехи в развитии электроники привели к созданию больших интегральных схем (БИС), где в одном кристалле размещалось несколько десятков тысяч электрических элементов.
В 1971 году американская фирма Intel объявила о создании микропроцессора. Это событие стало революционным в электронике.
Микропроцессор – это миниатюрный мозг, работающий по программе, заложенной в его память.
Соединив микропроцессор с устройствами ввода-вывода и внешней памяти, получили новый тип компьютера: микро-ЭВМ.
ЭВМ четвертого поколения
Микро-ЭВМ относится к машинам четвертого поколения. Наибольшее распространение получили персональные компьютеры (ПК). Их появление связано с именами двух американских специалистов: Стива Джобса и Стива Возняка. В 1976 году на свет появился их первый серийный ПК Apple-1, а в 1977 году – Apple-2.
Однако с 1980 года «законодателем мод» на рынке ПК становится американская фирма IBM. Ее архитектура стала фактически международным стандартом на профессиональные ПК. Машины этой серии получили название IBM PC (Personal Computer). Появление и распространение ПК по своему значению для общественного развития сопоставимо с появлением книгопечатания.
С развитием этого типа машин появилось понятие «информационные технологии», без которых невозможно обойтись в большинстве областей деятельности человека. Появилась новая дисциплина – информатика.
ЭВМ пятого поколения
Они будут основаны на принципиально новой элементной базе. Основным их качеством должен быть высокий интеллектуальный уровень, в частности, распознавание речи, образов. Это требует перехода от традиционной фон-неймановской архитектуры компьютера к архитектурам, учитывающим требования задач создания искусственного интеллекта.
Таким образом, для компьютерной грамотности необходимо понимать, что на данный момент создано четыре поколения ЭВМ:
Пятое поколение ЭВМ строится по принципу человеческого мозга, управляется голосом. Соответственно, предполагается применение принципиально новых технологий. Огромные усилия были предприняты Японией в разработке компьютера 5-го поколения с искусственным интеллектом, но успеха они пока не добились.
Фирма IBM тоже не намерена сдавать свои позиции мирового лидера, например, Японии. Мировая гонка за создание компьютера пятого поколения началась еще в 1981 году. С тех пор еще никто не достиг финиша. Поживем – увидим.
P.S. Статья закончилась, но можно еще прочитать:
Нашли ошибку? Выделите фрагмент текста и нажмите Ctrl+Enter.
Задание: изучите представленный ниже теоретический материал и заполните в конспекте таблицу:
Таблица «ПОКОЛЕНИЯ ЭВМ»
Под поколением ЭВМ понимают все типы и модели вычислительных машин, разработанные различными конструкторскими коллективами, но построенные на одних и тех же научных и технических принципах.
Что же является определяющим признаком при отнесении ЭВМ к тому или иному поколению?
элементная база, т. е из каких в основном элементов они построены.
важнейшие характеристики: быстродействие, объем оперативной памяти, программное обеспечение, устройства ввода-вывода.
Деление ЭВМ на поколения условное. Существует немало моделей, которые по одним признакам относятся к одному, а по другим – к другому поколению.
I поколение ЭВМ – ЭВМ, сконструированные в 1945 – 1955 гг.
Характерные черты первого поколения.
Элементная база – электронно-вакуумные лампы.
Соединение элементов – навесной монтаж проводами.
Габариты – ЭВМ выполнена в виде громадных шкафов. Эти компьютеры были огромными, неудобными и слишком дорогими машинами, которые могли приобрести крупные корпорации и правительства. Лампы потребляли большое количество электроэнергии и выделяли много тепла.
Быстродействие – 10-20 тыс. операций в секунду.
Эксплуатация – сложная из-за частого выхода из строя электронно-вакуумных ламп.
Программирование – машинные коды. При этом надо знать все команды машины, двоичное представление, архитектуру ЭВМ. В основном были заняты математики – программисты. Обслуживание ЭВМ требовало от персонала высокого профессионализма.
Оперативная память – до 2 Кбайт.
Данные вводились и выводились с помощью перфокарт, перфолент.
40-е годы XX в. считаются годами бурного прогресса научных и технических новшеств.
Первая ЭВМ «ЭНИАК» (цифровой интегратор и вычислитель) была создана в США после второй мировой войны в 1946 году. В группу создателей этой ЭВМ входил один из самых выдающихся ученых XX в. Джон фон Нейман.
Принципиальное описание устройств и работы компьютера принято называть архитектурой ЭВМ. Согласно принципам Неймана построение и функционирование универсальных программируемых вычислительных машин ЭВМ образует три главных компонента: арифметическое устройство, устройство ввода-вывода, память для хранения данных и программ.
Приемка Государственной комиссией МЭСМ – первая электронная счетная машина в континентальной Европе с хранимой в памяти программой.
Быстродействие более 100 операций в секунду. Первоначально машина была 16-разрядной, но затем разрядность была увеличена до 20. Пробный пуск машины МЭСМ состоялся 6 ноября 1950 года, решалась задача Y» + Y = 0; Y(0) = 0; Y() = 0;
Первые задачи были решены в 1951 году, 4-го января: вычисление суммы нечетного ряда факториала числа; возведение в степень. Регулярная эксплуатация началась 25.12.1951 года.
Первые ЭВМ были слишком дорогими, громоздкими и потому не имели массового применения: они использовались только в крупных научных центрах, в космосе, обороне, в метеорологии.
ЭВМ первого поколенияпоявились в 50-х годах XX столетия, изготовлялись на основе вакуумных электроламп. Эти ЭВМ размещались в нескольких больших металлических шкафах, занимавших целые залы и требовавшие сложнейшей системы охлаждения. Программы для ЭВМ первого поколения составлялись в машинных кодах – в виде длинных последовательностей двоичных чисел. Главным образом эти ЭВМ использовались для инженерных и научных расчетов.
К этому времени был сконструирован транзистор.
1 транзистор заменял 40 электронных ламп, был намного дешевле и надежнее.
Характерные черты второго поколения.
Элементная база – транзисторы (полупроводниковые элементы).
Соединение элементов – печатные платы и навесной монтаж. Печатные платы представляли собой пластины из изолирующего материала, на который наносился токопроводящий материал. Для крепления транзисторов имелись специальные гнезда.
Габариты – ЭВМ выполнена в виде однотипных стоек, чуть выше человеческого роста, но для размещения требовался специальный машинный зал.
Быстродействие – 100 – 500 тыс. операций в секунду.
Эксплуатация – вычислительные центры со специальным штатом обслуживающего персонала, появилась новая специальность – оператор ЭВМ.
Программное обеспечение – появление первых языков программирования.
Оперативная память – 2 – 32 Кбайт.
Введен принцип разделения времени – совмещение во времени работы разных устройств, например, одновременно с процессором работает устройство ввода-вывода с магнитной ленты. Принцип управления стал микропрограммным и в ЭВМ возникла необходимость наличия постоянной памяти, в ячейках которой присутствуют коды, соответствующие управляющим сигналам.
Данные вводились и выводились с помощью перфокарт, перфолент, магнитных лент.
Недостаток – несовместимость программного обеспечения.
Пример ЭВМ II поколения: БЭСМ – 6, созданная С. Лебедевым. Эта машина считалась по всем параметрам лучшей в мире и выполняла до 1 млн опер/сек.
ЭВМ второго поколения появились в 60х годах. В этих машинах логические элементы реализовывались на базе полупроводниковых приборов – транзисторов. Это позволило увеличить надежность машин, сократить их размеры и потребление электроэнергии. Тем самым открылся путь для серийного производства ЭВМ
В составе ЭВМ второго поколения появились печатающие устройства для вывода телетайпа, телетайпы для ввода, магнитные накопители для хранения информации (магнитные ленты). Диалог человека с машиной стал более естественным благодаря появлению языков программирования высокого уровня: Фортран, Алгол, Бейсик и др. Начали создаваться первые автоматизированные системы на базе ЭВМ.
Технологический процесс производства микропроцессоров неразрывно связан с эволюцией и постоянным усовершенствованием транзистора. Революционная роль транзистора – в его малых размерах. Объединение большого числа таких транзисторов на текстолитовой плате позволило создавать отдельные узлы и даже целые устройства. Применение транзисторов позволило уменьшить габариты ЭВМ и увеличить их вычислительную мощность. Однако габариты ЭВМ на транзисторах всё же оставались очень большими для их широкого применения. Но ведь с точки зрения технологического процесса нет особой разницы, делать ли один транзистор на подложке или сразу много. Изготовив достаточное количество транзисторов на одной подложке, остается один шаг до превращения нескольких транзисторов в интегральную микросхему – соединить определённым образом полученные транзисторы.
III поколение ЭВМ – ЭВМ, сконструированные в 1965 – 1975 гг.
29 октября 1969 года – проверка работы самой первой глобальной военной компьютерной сети ARPANet, связывающей исследовательские лаборатории на территории США
Характерные черты третьего поколения.
Элементная база – интегральные схемы.
Соединение элементов – печатные платы.
Габариты – ЭВМ выполнена в виде однотипных стоек.
Быстродействие –1-10 млн. операций в секунду.
В качестве устройств ввода и вывода появляются терминалы (мониторы) и клавиатуры, что явилось огромным преимуществом III поколения.
Оперативная память – 64 Кбайт.
Введен принцип разделения времени, принцип микропрограммного управления, принцип модульности – ЭВМ состоит из набора модулей: конструктивно и функционально законченных блоков в стандартном исполнении, принцип магистральности – способ связи всех модулей ЭВМ, входные и выходные устройства соединены одинаковыми проводами – шинами, появление магнитных дисков, дисплеев, графопостроителей.
Пример ЭВМ III поколения: ЕС ЭВМ (ЭВМ единой системы)
ЭВМ третьего поколения появились в 70-х годах. Их основу составляли интегральные схемы. Благодаря этому уменьшились размеры, потребление электроэнергии и стоимость компьютеров. Происходят существенные изменения в архитектуре ЭВМ: появилась возможность выполнять одновременно несколько программ на одной машине. Такой режим работы называется мультипрограммным (многопрограммным) режимом.
В составе ЭВМ третьего поколения были включены удобные устройства ввода-вывода, дисплей на основе электронно-лучевых трубок, накопители информации на магнитных лентах и дисках, графопостроители, т.д. К работе с этими ЭВМ стали подключаться широкий круг специалистов, машины появились в институтах и университетах. Начали создаваться операционные системы, базы данных, языки системы «искусственного интеллекта», стали внедряться системы автоматизированного проектирования.
С появлением микропроцессоров эволюция транзисторов, из которых, собственно, и состоит любая микросхема, не остановилась. Продолжается борьба за чистоту исходных кремниевых пластин.
1976 г. – фирма IBM создает первый струйный принтер.
1976 г. – создание первой ПЭВМ
1982 г.- фирма IBM приступила к выпуску компьютеров IBM РС с процессором Intel 8088, в котором были заложены принципы открытой архитектуры, благодаря которому каждый компьютер может собираться как из кубиков, с учетом имеющихся средств и с возможностью последующих замен блоков и добавления новых.
1988 г. – был создан первый вирус-“червь”, поражающий электронную почту.
Характерные черты четвертого поколения.
Элементная база – большие и супер большие интегральные схемы (БИС и СБИС), то есть микропроцессоры.
Соединение элементов – печатные платы.
Габариты – компактные ЭВМ, ноутбуки.
Быстродействие – более 100 млн. операций в секунду.
Эксплуатация – многопроцессорные и многомашинные комплексы, любые пользователи ЭВМ.
Программное обеспечение – графические операционные системы.
Телекоммуникационная обработка данных, объединение в компьютерные сети.
Примеры ЭВМ IV поколения: мини и микро ЭВМ, персональный компьютер.
На рубеже 80-х годов были созданы и выпущены в массовое производство ЭВМ четвертого поколения. Элементарной базой этих ЭВМ стали микропроцессоры – сверхбольшие интегральные микросхемы, которые способны выполнять функции основного блока компьютера – процессора. Их можно сравнить с миниатюрным мозгом, работающего по программе заложенной в его памяти. Соединив микропроцессор с устройствами ввода-вывода, внешней памяти, получили новый тип компьютера – микро-ЭВМ, габариты которых позволяют устанавливать их на любом рабочем месте. В составе этих ЭВМ включаются удобные средства накопления информации (магнитные и оптические), ввода и вывода информации: компактные печатающие устройства, мышь, джойстик, удобная клавиатура, цветные графические мониторы, т.д.
Наиболее яркими представителями ЭВМ четвертого поколения служат персональные компьютеры. Сущность персонального ПК можно сформулировать так:
ПК – микроЭВМ с «дружественным» к пользователю аппаратным и программным обеспечением.
Десятки миллионов персональных ЭВМ, установленных в службах сервиса и управления, на производстве и в образовании, требуют овладения компьютерной грамотности от всего населения.
Появление и распространение ПК по своему значению для общественного развития сопоставимо с появлением книгопечатания. Именно ПК сделали компьютерную грамотность массовым явлением. С развитием этого типа машин появилось понятие «информационные технологии», без которых уже нельзя обойтись в большинстве областей деятельности человека.
Есть и другая линия в развитии ЭВМ четвертого поколения – это суперЭВМ. Машины этого класса имеют быстродействие сотни миллионов и миллиарды операций в секунду.
Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.
Чем принято определять поколение эвм
Историю развития современных ЭВМ разделяют на 4 поколения. Но деление компьютерной техники на поколения — весьма условная, нестрогая классификация по степени развития аппаратных и программных средств, а также способов общения с компьютером.
Идея делить машины на поколения вызвана к жизни тем, что за время короткой истории своего развития компьютерная техника проделала большую эволюцию, как в смысле элементной базы (лампы, транзисторы, микросхемы и др.), так и в смысле изменения её структуры, появления новых возможностей, расширения областей применения и характера использования. Этот прогресс показан в данной таблице:
П О К О Л Е Н И Я Э В М
Количество ЭВМ в мире (шт.)
Быстродействие (операций в сек.)
Гибкий и лазерный диск
Притом для каждой машины использовался свой язык программирования. Набор команд был небольшой, схема арифметико-логического устройства и устройства управления достаточно проста, программное обеспечение практически отсутствовало. Показатели объема оперативной памяти и быстродействия были низкими. Для ввода-вывода использовались перфоленты, перфокарты, магнитные ленты и печатающие устройства, оперативные запоминающие устройства были реализованы на основе ртутных линий задержки электроннолучевых трубок.
Эти неудобства начали преодолевать путем интенсивной разработки средств автоматизации программирования, создания систем обслуживающих программ, упрощающих работу на машине и увеличивающих эффективность её использования. Это, в свою очередь, потребовало значительных изменений в структуре компьютеров, направленных на то, чтобы приблизить её к требованиям, возникшим из опыта эксплуатации компьютеров.
В 1948г. году академик Сергей Алексеевич Лебедев предложил проект первой на континенте Европы ЭВМ – Малой электронной счетно-решающей машины (МЭМС). В 1951г. МЭСМ официально вводится в эксплуатацию, на ней регулярно решаются вычислительные задачи. Машина оперировала с 20разрядными двоичными кодами с быстродействием 50 операций в секунду, имела оперативную память в 100 ячеек на электронных лампах.
В 1958 г. в ЭВМ были применены полупроводниковые транзисторы, изобретённые в 1948 г. Уильямом Шокли, они были более надёжны, долговечны, малы, могли выполнить значительно более сложные вычисления, обладали большой оперативной памятью. 1 транзистор способен был заменить
40 электронных ламп и работал с большей скоростью.
Во II-ом поколении компьютеров дискретные транзисторные логические элементы вытеснили электронные лампы. В качестве носителей информации использовались магнитные ленты («БЭСМ-6», «Минск-2″,»Урал-14») и магнитные сердечники, появились высокопроизводительные устройства для работы с магнитными лентами, магнитные барабаны и первые магнитные диски.
В качестве программного обеспечения стали использовать языки программирования высокого уровня, были написаны специальные трансляторы с этих языков на язык машинных команд. Для ускорения вычислений в этих машинах было реализовано некоторое перекрытие команд: последующая команда начинала выполняться до окончания предыдущей.
Появился широкий набор библиотечных программ для решения разнообразных математических задач. Появились мониторные системы, управляющие режимом трансляции и исполнения программ. Из мониторных систем в дальнейшем выросли современные операционные системы.
Машинам второго поколения была свойственна программная несовместимость, которая затрудняла организацию крупных информационных систем. Поэтому в середине 60-х годов наметился переход к созданию компьютеров, программно совместимых и построенных на микроэлектронной технологической базе.
В 1964 году, фирма IBM объявила о создании шести моделей семейства IBM 360 (System 360), ставших первыми компьютерами третьего поколения.
Машины третьего поколения — это семейства машин с единой архитектурой, т.е. программно совместимых. В качестве элементной базы в них используются интегральные схемы, которые также называются микросхемами.
Машины третьего поколения имеют развитые операционные системы. Они обладают возможностями мультипрограммирования, т.е. одновременного выполнения нескольких программ. Многие задачи управления памятью, устройствами и ресурсами стала брать на себя операционная система или же непосредственно сама машина.
(с 1972 г. по настоящее время)
Четвёртое поколение — это теперешнее поколение компьютерной техники, разработанное после 1970 года.
Впервые стали применяться большие интегральные схемы (БИС), которые по мощности примерно соответствовали 1000 ИС. Это привело к снижению стоимости производства компьютеров.
Сейчас ведутся интенсивные разработки ЭВМ V поколения. Разработка последующих поколений компьютеров производится на основе больших интегральных схем повышенной степени интеграции, использования оптоэлектронных принципов (лазеры, голография).