чем создается давление в реакторах каталитического риформинга

Инструменты пользователя

Инструменты сайта

Содержание

Каталитический риформинг

чем создается давление в реакторах каталитического риформинга. Смотреть фото чем создается давление в реакторах каталитического риформинга. Смотреть картинку чем создается давление в реакторах каталитического риформинга. Картинка про чем создается давление в реакторах каталитического риформинга. Фото чем создается давление в реакторах каталитического риформинга 3)
Общий вид установки риформинга

В процессе каталитического риформинга температуры кипения веществ меняются очень незначительно. Изменение касается, в основном, химического состава.

Сырьем для каталитического риформинга является, в основном, прямогонная нафта и реже дистилляты вторичного происхождения, например, бензин термического крекинга, коксования и гидрокрекинга. Эти фракции обычно содержат высокие концентрации парафинов и нафтенов. В процессе каталитического риформинга многие из этих компонентов превращаются в ароматические соединения, которые имеют гораздо более высокие октановые числа.

При этом происходят в основном следующие полезные химические реакции:

Протекают также некоторые побочные реакции:

Самый важный момент, который следует запомнить, — это то, что парафины и нафтены превращаются в ароматические соединения и некоторые изомеры, как показано на следующем рисунке.

чем создается давление в реакторах каталитического риформинга. Смотреть фото чем создается давление в реакторах каталитического риформинга. Смотреть картинку чем создается давление в реакторах каталитического риформинга. Картинка про чем создается давление в реакторах каталитического риформинга. Фото чем создается давление в реакторах каталитического риформинга

Для осуществления этих сложных превращений нужен необычный катализатор, который состоит из оксида алюминия (Al2O3), силикагеля (SiO2) и платины (Pt). Такие катализаторы называются бифункциональными. Они сочетают кислотную и гидрирующую-дегидрирующую функции. Реакции гидрирования и дегидрирования протекают на металлических центрах платины или платины, промотированной добавками рения, иридия, олова, галлия, германия и др., тонко диспергированных на носителе. Кислотную функцию в промышленных катализаторах риформинга выполняет носитель, в качестве которого используют оксид алюминия. Для усиления и регулирования кислотной функции носителя в состав катализатора вводят галоген: фтор или хлор. В настоящее время применяют только хлорсодержащие катализаторы. 5)

Процесс каталитического риформинга на платиновом катализаторе часто называют платформингом. 6) Платины требуется не так уж мало (на несколько миллионов долларов для одной риформинг-установки), поэтому катализатор заслуживает большого внимания.

чем создается давление в реакторах каталитического риформинга. Смотреть фото чем создается давление в реакторах каталитического риформинга. Смотреть картинку чем создается давление в реакторах каталитического риформинга. Картинка про чем создается давление в реакторах каталитического риформинга. Фото чем создается давление в реакторах каталитического риформинга чем создается давление в реакторах каталитического риформинга. Смотреть фото чем создается давление в реакторах каталитического риформинга. Смотреть картинку чем создается давление в реакторах каталитического риформинга. Картинка про чем создается давление в реакторах каталитического риформинга. Фото чем создается давление в реакторах каталитического риформинга

Существует несколько способов приведения углеводородного сырья в контакт с катализатором. Для начала рассмотрим вариант, который называется процесс с неподвижным слоем катализатора, так как в этом случае углеводороды просачиваются сквозь слой катализатора, находящийся в реакторе.

Установки каталитического риформинга со стационарным слоем катализатора

Установки каталитического риформинга всех типов включают следующие блоки: гидроочистки сырья, очистки водородсодержащего газа, реакторный, сепарации газа и стабилизации катализата. 7)

чем создается давление в реакторах каталитического риформинга. Смотреть фото чем создается давление в реакторах каталитического риформинга. Смотреть картинку чем создается давление в реакторах каталитического риформинга. Картинка про чем создается давление в реакторах каталитического риформинга. Фото чем создается давление в реакторах каталитического риформинга

Гидроочищенное и осушенное сырье сжимают до определенного давления, нагревают и подают в первый реактор, где оно просачивается сквозь слой катализатора и выходит из нижней части реактора. Эта процедура повторяется еще дважды в двух последующих реакторах. 9)

Таким образом, основными реакционными аппаратами установок (или секций) каталитического риформинга с периодической регенерацией катализатора являются адиабатические реакторы шахтного типа со стационарным слоем катализатора.

Поступающий в реактор газофазный поток сырья и водорода пропускают по периферийным перфорированным желобам через слой катализатора к центральной трубе и затем выводят из аппарата.

Катализатор располагают в виде одного слоя с равномерной плотностью засыпки. Верхнюю часть снабжают тарелкой, предотвращающей прямое попадание потока сырья в слой катализатора. В центре устанавливают перфорированную трубу, обтянутую сеткой. Нижнюю часть реактора заполняют фарфоровыми шарами.

чем создается давление в реакторах каталитического риформинга. Смотреть фото чем создается давление в реакторах каталитического риформинга. Смотреть картинку чем создается давление в реакторах каталитического риформинга. Картинка про чем создается давление в реакторах каталитического риформинга. Фото чем создается давление в реакторах каталитического риформинга
Реактор риформинга:
1 — распределитель; 2 — штуцер для термопары; 3 — днище верхнее; 4 — кожух; 5 — корпус; 6 — тарелка; 7 — футеровка; 8 — желоб; 9 — катализатор; 10 — труба центральная; 11 — пояс опорный; 12 — опора; 13 — днище нижнее; 14 — шары фарфоровые; I — ввод сырья; II — вывод продукта; II — вывод катализатора 10)

После вывода из реактора продукт пропускают через холодильник, где большая его часть сжижается. Сжижение нужно для того, чтобы отделить богатый водородом газ и направить его на рециркуляцию. Это довольно важный момент, которому стоит посвятить несколько слов.

Водород является важным побочным продуктом каталитического риформинга. Взгляните еще раз на химические реакции. Большинство из них сопровождается выделением водорода, потому что в ароматических углеводородах его меньше, чем в парафинах или нафтенах. Но водород здесь же и потребляется. Его нужно подмешивать к сырью, чтобы в реакторах постоянно сохранялась его высокая концентрация. В этом случае атомы углерода не осаждаются на катализаторе, как при каталитическом крекинге. Вместо этого углерод реагирует с водородом с образованием углеводородных газов.

Вернемся к оборудованию. Поток водорода частично направляется на установку газофракционирования, а частично возвращается в процесс. Жидкий продукт из нижней части сепаратора направляется на разделение в колонну стабилизации, которая является не чем иным, как дебутанизатором (бутановой колонной). Нижняя фракция, риформат (или катализат) отделяется в этой колонне от углеводородных газов (до бутана), которые поднимаются вверх и направляются на ГФУ насыщенного газа. 11)

Регенерация

Через некоторое время работы установки активность катализатора падает. Это приводит к снижению октанового числа риформата и уменьшению его выхода на единицу объема сырья. К каталитическим ядам, снижающим скорости реакций риформинга и вызывающим закоксовывание катализатора, относятся сернистые соединения, превращающиеся в условиях риформинга в сероводород, соединения азота, переходящие во время риформинга в аммиак, металлорганические соединения свинца, меди, мышьяка, которые гидрируются до металлов и откладываются на поверхности катализатора. Также сильным каталитическим ядом для платины является оксид углерода. 12)

Раньше установки риформинга останавливали для регенерации катализатора, но затем был разработан непрерывный режим, который осуществляется за счет добавления еще одного реактора. В любой момент времени три реактора находятся в работе, а четвертый — в режиме регенерации катализатора. Регенерация осуществляется путем подачи горячего воздуха (на приведенном ниже видео производится подача азота с некоторым количеством кислорода), который удаляет с поверхности катализатора углерод, превращая его в соответствующие монооксид и диоксид (путем выжига кокса). Для восстановления катализатора реактор нужно выводить из процесса всего на 30 часов; таким образом, процесс почти всегда ведется со свежим катализатором.

Несмотря на постоянную регенерацию, через определенный промежуток времени активность катализатора все же падает. При высоких температурах регенерации поры катализатора разрушаются. В результате раз в несколько лет процесс приходится останавливать для замены катализатора.

Установки каталитического риформинга с непрерывной регенерацией катализатора

Установки со стационарным слоем катализатор рассчитаны на рабочее давление 4,0-1,5 МПа. При снижении рабочего давления с одновременным повышением глубины превращения сырья более экономичны установки с непрерывной регенерацией катализатора. На таких установках четыре реактора риформинга расположены друг над другом и связаны между собой системами переточных труб малого диаметра. Шариковый катализатор диаметром 1,6 мм свободно перетекает из реактора в реактор под действием силы тяжести. Из реактора четвертой ступени через систему затворов с шаровыми клапанами катализатор поступает в питатель (дозатор) пневмотранспорта и азотом подается в бункер-накопитель узла регенерации. Регенератор представляет собой аппарат с радиальным потоком реакционных газов, разделенный на три технологические зоны.6 в верхней производится выжиг кокса, в средней — окислительное хлорирования катализатора, в нижней зоне катализатор прокаливают в токе сухого воздуха. Разобщение зон — гидравлическое. Катализатор проходит все зоны под действием силы тяжести. Из регенератора через систему затворов катализатор поступает в питатель пневмотранспорта и водосодержащим газом подается в бункер-накопитель, расположенный над реактором риформинга первой ступени. Процесс регенерации автоматизирован.

Вывод:

Таким образом, каталитический риформинг является важным процессом превращения бензинов с низким октановым числом в продукт с высоким октановым числом, который может быть использован как компонент автомобильного бензина. Групповой состав сырья смещается от парафинов и нафтенов в сторону ароматики и, таким образом, появляется возможность использовать высокие октановые числа ароматики. К сожалению, чем выше октановое число риформата, тем ниже его выход и тем больше образуется газов.

Источник

Каталитический риформинг

Различают каталитический и термический риформинг

Основными целями риформинга являются:

повышение октанового числа бензинов с целью получения неэтилированного высокооктанового бензина;

получение ароматических углеводородов (аренов);

получение водосодержащего газа для процессов гидроочистки, гидрокрекинга, изомеризации и т. д.

Жидкие продукты (риформат) можно использовать как высокооктановый компонент автомобильных и авиационных бензинов или направлять на выделение ароматических углеводородов, а газ, образующийся при риформинге, подвергают разделению.

Высвобождаемый при этом водород частично используют для пополнения потерь циркулирующего водородсодержащего газа и для гидроочистки исходного сырья, но большую же часть водорода с установки выводят.

Такой водород значительно дешевле специально получаемого.

Именно этим объясняется его широкое применение в процессах, потребляющих водород, особенно при гидроочистке нефтяных дистиллятов.

Кроме водородсодержащего газа из газов каталитического риформинга выделяют сухой газ (C1 – С2 или С1 – С3) и сжиженные газы (С3 – С4); в результате получают стабильный дебутанизированный бензин.

В ряде случаев на установке (в стабилизационной секции) получают стабильный бензин с заданным давлением насыщенных паров.

Это имеет значение для производства высокооктановых компонентов автомобильного или авиационного бензина.

Для получения товарных автомобильных бензинов бензин риформинга смешивают с другими компонентами (компаундируют).

Смешение вызвано тем, что бензины каталитического риформинга содержат 60 – 70% ароматических углеводородов и имеют утяжеленный состав, поэтому в чистом виде они непригодны для использования.

В качестве компаундирующих компонентов могут применяться легкие бензиновые фракции прямой перегонки нефти, изомеризаты и алкилаты.

Поэтому для увеличения производства высокооктановых топлив на основе бензинов риформинга необходимо расширять производства высокооктановых изопарафиновых компонентов.

Октановые числа ароматических углеводородов:

Углеводород исслед-ое моторное дорожное

Бензол (Ткип 80°С) 106 88 97

Толуол (Ткип 111°С) 112 98 105

пара-Ксилол (Ткип 138°С) 120 98 109

мета-Ксилол(Ткип 139°С) 120 99 109,5

oртo-Ксилол (Ткип 144°С) 105 87 96

Этилбензол (Ткип 136°С) 114 91 102,5

Сумма ароматики С9 117 98 107,5

Сумма ароматики С10 110 92 101

Различают риформинг термический и под давлением Н2 в присутствии катализатора.

Термический риформинг широко применяли ранее только для производства высокооктановых бензинов.

Основные реакции: дегидрогенизация и дегидроизомеризация нафтеновых углеводородов, деалкилирование и конденсация ароматических углеводородов.

Переработку бензино-лигроиновых фракций (пределы выкипания 60-180 °С) проводили в трубчатых печах при 530-560 °С и 5-7 МПа.

Поэтому, несмотря на простоту аппаратурного оформления, данный процесс практически полностью вытеснен каталитическим риформингом.

Образование ароматических углеводородов происходит в результате следующих реакций:

дегидрирование шестичленных циклоалканов:

циклогексан в бензол

метилциклогексан в толуол

диметилциклогексан в ксилол

дегидроциклизация парафиновых углеводородов

гидрокрекинг с образованием жирных газов;

Следует отметить, что большое содержание ароматических углеводородов в бензине плохо сказывается на эксплуатационных и экологических показателях топлива.

Повышается нагарообразование и выбросы канцерогенных веществ.

Особенно это касается бензола, при сгорании которого образуется бензопирен- сильнейший канцероген.

Сырьём для полистирола является стирол продукт риформинга.

Каталитический риформинг стал одним из ведущих процессов нефтеперерабатывающей и нефтехимической промышленности.

С его помощью удается улучшать качество бензиновых фракций и получать ароматические углеводороды, особенно из сернистой и высокосернистой нефти.

В последнее время были разработаны процессы каталитического риформинга для получения топливного газа из легких углеводородов.

Возможность выработки столь разнообразных продуктов привела к использованию в качестве сырья не только бензиновых фракций прямой перегонки нефти, но и других нефтепродуктов.

До массового внедрения каталитического риформинга применялся термический риформинг и комбинированный процесс легкого крекинга тяжелого сырья (мазута,полугудрона и гудрона) и термического риформинга бензина прямой перегонки.

В дальнейшем термический риформинг прекратил свое существование ввиду низких технико-экономических показателей по сравнению с каталитическим.

При термическом риформинге выход бензина на 20-27% меньше и октановое число его а 5-7 пунктов ниже, чем при каталитическом риформинге.

Кроме того, бензин термического риформинга нестабилен.

Процесс каталитического риформинга осуществляют при сравнительно высокой температуре и среднем давлении, в среде водородсодержащего газа.

Каталитический риформинг проходит в среде газа с большим содержанием водорода (70-80 объемн. %).

Это позволяет повысить температуру процесса, не допуская глубокого распада углеводородов и значительного коксообразования.

В результате увеличиваются скорость дегидрирования нафтеновых углеводородов и скорости дегидроциклизации и изомеризации парафиновых углеводородов.

В зависимости от назначения процесса, режима и катализатора в значительных пределах изменяются выход и качество получаемых продуктов.

Однако общим для большинства систем каталитического риформинга является образование ароматических углеводородов и водородсодержащего газа.

Назначение процесса каталитического риформинга, а также требования, предъявляемые к целевому продукту, требуют гибкой в эксплуатации установки.

Необходимое качество продукта достигается путем подбора сырья, катализатора и технологического режима.

Получаемый в процессе каталитического риформинга водородсодержащий газ значительно дешевле специально получаемого водорода; его используют в других процессах нефтепереработки, таких, как гидроочистка и гидрокрекинг.

При каталитическом риформинге сырья со значительным содержанием серы или бензинов вторичного происхождения, в которых есть непредельные углево­дороды, катализатор быстро отравляется.

Поэтому такое сырье перед каталитическим риформингом целесообразно подвергать гидроочистке.

Это способствует большей продолжительности работы катализатора без регенерации и улучшает технико-экономические показатели работы установки.

Источник

Каталитический риформинг бензинов

Процесс каталитического риформинга бензиновых фракций (риформинга бензинов) является одним из важнейших процессов современной нефтеперерабатывающей и нефтехимической промышленности. Процесс риформинга предназначен для производства высокооктановых компонентов автомобильных бензинов и для производства легких ароматических углеводородов – бензола, толуола и ксилолов. Весьма важным продуктом процесса риформинга является водородсодержащий газ с высоким содержанием водорода, который используется для гидроочистки широкого ассортимента нефтяных фракций, для процесса гидрокрекинга тяжелых нефтяных фракций и других гидрогенизационных процессов.

Процесс каталитического риформинга является сложным химическим процессом. Это обусловлено, прежде всего, химическим составом исходного сырья процесса – разнообразных бензиновых фракций. В состав так называемой широкой фракции бензина входит более 150 углеводородов. Это углеводороды трех основных групп: парафиновые углеводороды нормального и изостроения, нафтеновые углеводороды с пятичленными и шестичленными циклами с одной или несколькими замещающими алкильными группами и ароматические углеводороды, которые обычно представлены бензолом, толуолом, ксилолами и незначительным количеством более тяжелых алкилбензолов. Среди парафинов преобладают углеводороды нормального строения и монометилзамещенные структуры. Нафтены представлены гомологами циклопентана и циклогексана.

Научные основы процесса каталитического риформинга были подготовлены работами русских учёных. Так ещё в 1911г. Н.Д. Зелинским была показана возможность дегидрогенизации шестичленных нафтеновых углеводородов при температуре выше 300°С над платиновым и палладиевым катализаторами количественно, практически без побочных реакций. В том же году дегидрогенизацию нафтеновых углеводородов при контакте их с оксидом металлов осуществили В.Н. Ипатьев и Н. Довгелевич. В 1936г. в СССР одновременно в трёх лабораториях была открыта реакция непосредственной дегидроциклизации парафиновых углеводородов в ароматические. Б.Л. Молдавский и Г.Д. Камушер в ГИВДс осуществили дегидроциклизацию парафинов на оксиде хрома при температуре 450-470°С. В.И. Каржёв, М.Г. Северьянова и А.Н. Сиова во ВНИГИ наблюдали реакции дегидроциклизации парафинов на меднохромовом катализаторе при температуре 500-550°С. Б.А. Казанский и А.Ф. Платэ в МГУ показали возможность дегидроциклизаци парафиновых углеводородов в присутствии платинированного угля при температуре 300-310°С.

Основой процесса каталитического риформинга бензинов являются реакции, приводящие к образованию ароматических углеводородов. Это реакции дегидрирования шестичленных и дегидроизомеризации пятичленных нафтеновых углеводородов, дегидроциклизация парафиновых углеводородов. Кроме того, второй по значимости в процессе каталитического риформинга является реакция изомеризации углеводородов.

Наряду с изомеризацией пятичленных и шестичленных нафтенов изомеризации подвергаются парафиновые и ароматические углеводороды. Существенную роль в процессе играют реакции гидрокрекинга парафинов, сопровождающиеся газообразованием. При каталитическом риформинге протекают также реакции раскрытия пятичленного кольца нафтенов с образованием соответствующих парафиновых углеводородов.

Типы установок риформинга бензиновых фракций

В настоящее время трудно найти завод, технология переработки нефти на котором не предусматривала бы каталитического риформирования. Развитие процесса каталитического риформинга было обусловлено длительной тенденцией роста октановых чисел товарных бензинов на фоне постепенного отказа от использования тетраэтилсвинца, как октаноповышающей добавки, а также ростом спроса на ароматические углеводороды. Таким образом, каталитический риформинг прочно занял место базового процесса современной нефтепереработки.

Технологическое оформление процесса каталитического риформинга определяется по способу проведения регенерации катализатора. Подавляющее большинство установок риформинга описывают тремя разновидностями технологий: полурегенеративный, циклический и процесс с непрерывной регенерацией катализатора. Наибольшее количество установок работает по полурегенеративному варианту. Например, платформинг фирмы ЮОП лицензирован примерно на 600 установках, магнаформинг фирмы Энгельгард осуществляется более чем на 150 установках, процесс ренийформинг фирмы Шеврон используется более чем на 70 установках, наконец, технология Французского института нефти лицензирована более чем на 60 установках мира. В России практически все установки каталитического риформинга (за исключением трех – в Уфе, Нижнем Новгороде и Омске) работают в полурегенеративном варианте.

Технологические параметры работы установок риформинга по полурегенеративному варианту: давление- от 1.3 до 3.0 МПа, температура- от 480 до 530?С, октановое число (ИОЧ) колеблется от 94 до 100, выход риформата от 80 до 88% мас. Межрегенерационный цикл работы катализатора составляет от года до трех лет.

Второй тип технологии – циклический – применяется в основном на заводах США и характеризуется более жесткими условиями проведения процесса (давление 0.9-2.1 МПа, температура 505-550?С) и, как следствие, небольшими межрегенерационными циклами (от 40 до 5 суток). Октановое число риформата (ИОЧ) – от 95 до 103. Катализатор до полной отработки может выдерживать до 600 регенераций. К циклическому варианту относится процесс пауэрформинг фирмы Эксон (около 100 установок) и ультраформинг фирмы Амоко Ойл Ко (

Наконец, третий тип технологии каталитического риформинга представляет собой процесс с непрерывной регенерацией катализатора. Данная технология наиболее прогрессивна, так как позволяет работать в лучших термодинамических условиях (давление – 0.35-0.9 МПа, температура –до 550?С) без остановки на регенерацию (межремонтный пробег установок риформинга достигает 3-х лет и более) и достигнуть максимального октанового числа риформата (ИОЧ=102-104).

Первая установка запущена по лицензии фирмы ЮОП в 1971 году, в 1983году эксплуатировалось 35 установок, а в настоящее время работает 163 установки (в том числе 40 с давлением 0,35 МПа) по лицензии ЮОП и 56 установок по лицензии Французского института нефти.

Классификация промышленных установок риформинга

чем создается давление в реакторах каталитического риформинга. Смотреть фото чем создается давление в реакторах каталитического риформинга. Смотреть картинку чем создается давление в реакторах каталитического риформинга. Картинка про чем создается давление в реакторах каталитического риформинга. Фото чем создается давление в реакторах каталитического риформинга

В России подавляющее большинство установок каталитического риформинга относится к классу полурегенеративного типа. Установки каталитического риформинга состоят из двух блоков. На первой стадии исходное сырье подвергается предварительной гидроочистке бензиновых фракций с целью практически полного удаления присутствующих в нем примесей органических соединений серы, азота, кислорода, хлора и др., являющихся ядами для катализаторов, используемых в процессе каталитического риформинга. На второй стадии гидроочищенное сырье подвергается непосредственно каталитическому риформингу.

Упрощенная принципиальная схема блока каталитического риформинга представлена на рис. 1.

чем создается давление в реакторах каталитического риформинга. Смотреть фото чем создается давление в реакторах каталитического риформинга. Смотреть картинку чем создается давление в реакторах каталитического риформинга. Картинка про чем создается давление в реакторах каталитического риформинга. Фото чем создается давление в реакторах каталитического риформинга

Сырье – стабильный гидрогенизат с блока, где происходит гидроочистка бензиновых фракций поступает на прием сырьевого насоса Н-1, который подает его в тройник смешения на смешение с циркулирующим водородсодержащим газом (ВСГ), поступающим с выкида циркуляционного компрессора ЦК-1. Смесь сырья и ВСГ в теплообменнике Т-1 подогревается газопродуктовым потоком, выходящим из реактора Р-3, подогревается в первой секции печи П-1 и поступает в реактор Р-1, затем подогревается во второй секции П-1, проходит реактор Р-2, затем проходит третью секцию печи П-1 и проходит в реактор Р-3. Газопродуктовая смесь после реактора Р-3 отдает часть своего тепла газосырьевому потоку в теплообменнике Т-1, охлаждается в воздушном холодильнике ВХ-1, в водяном холодильнике Х-1 и поступает в газосепаратор С-1. Здесь происходит отделение водородсодержащего газа от жидкого продукта – нестабильного катализата. Водородсодержащий газ из сепаратора С-1 направляется на удаление избыточной влаги в адсорбер А-1 (или минует его по байпасу) и поступает на прием циркуляционного компрессора ЦК-1, который вновь подает его на смешение с сырьем.

Избыток ВСГ направляется на блок гидроочистки бензиновых фракций или в водородное кольцо завода. Нестабильный катализат из сепаратора С-1 подогревается в теплообменнике Т-2 потоком стабильного катализата и поступает в среднюю часть колонны К-1 на стабилизацию – отделение растворенных в нем газообразных углеводородов. Верхом колонны К-1 выводятся легкие углеводороды до бутанов включительно. Пары охлаждаются и конденсируются в воздушном холодильнике ВХ-2 и водяном холодильнике Х-2 и поступает в емкость орошения Е-1. Жидкий продукт из Е-1 поступает на прием насоса Н-2, который подает его в качестве холодного орошения на верхнюю тарелку колонны К-1. Балансовый избыток выводится на ГФУ или в парк в виде жидкого газа. Несконденсировавшиеся газы из емкости Е-1 сбрасываются в топливную сеть.

Стабильный катализат риформинга выводится снизу колонны К-1, проходит теплообменник Т-2, охлаждается в воздушном холодильнике ВХ-3, водяном холодильнике Х-3 и направляется в парк в качестве готового продукта. Подвод тепла в низ колонны К-1 осуществляется циркуляцией части стабильного катализата через печь П-2 под нижнюю тарелку колонны. Для компенсации уноса части хлора с поверхности катализатора схемой предусмотрена дозированная подача раствора хлорорганического соединения на вход первого либо в каждый из реакторов. Для поддержания водно-хлорного баланса в зоне катализа предусматривается дозированная подача воды в реакторный блок, включая возможность подачи отдельно в каждый реактор.

Для выполнения операции осернения катализатора в пусковой период схемой предусматривается дозированная подача в реакторный блок раствора сероорганического соединения. Схемой предусмотрена также подача в каждый реактор хлорорганического соединения для выполнения операции реактивации катализатора риформинга.

Таблица 2. Установки риформинга для производства бензина (по типовым проектам)

чем создается давление в реакторах каталитического риформинга. Смотреть фото чем создается давление в реакторах каталитического риформинга. Смотреть картинку чем создается давление в реакторах каталитического риформинга. Картинка про чем создается давление в реакторах каталитического риформинга. Фото чем создается давление в реакторах каталитического риформинга

Установки каталитического риформинга, предназначенные для производства компонента автомобильного бензина, состоят из двух основных блоков – блока, где происходит гидроочистка бензиновых фракций и блока риформинга. Исключением является установка Л-35-5/300, которая, являясь первенцем промышленных установок риформинга, первоначально была спроектирована в виде самостоятельного блока каталитического риформинга. Эта установка работает в комплексе с отдельно стоящей типовой установкой гидроочистки Л-24-300.

Таблица 3. Установки каталитического риформинга для производства ароматических углеводородов (по типовым проектам)

чем создается давление в реакторах каталитического риформинга. Смотреть фото чем создается давление в реакторах каталитического риформинга. Смотреть картинку чем создается давление в реакторах каталитического риформинга. Картинка про чем создается давление в реакторах каталитического риформинга. Фото чем создается давление в реакторах каталитического риформинга

Значительно более сложный технологический комплекс представляет собой установка каталитического риформинга, предназначенная для производства ароматических углеводородов. В этот комплекс кроме блока гидроочистки и блока риформинга входит также блок экстракции ароматических углеводородов из катализата риформинга и блок четкой ректификации для разделения ароматического экстракта с получением ароматических углеводородов товарного качества. В табл. 2. представлена краткая характеристика основных типов установок риформинга, предназначенных для производства компонента автомобильного бензина. В табл. 3. представлена краткая характеристика типовых установок риформинга, предназначенных для производства ароматических углеводородов. Представленные данные характеризуют установки по материалам типовых проектов.

Таблица 4. Объем системы установок риформинга

чем создается давление в реакторах каталитического риформинга. Смотреть фото чем создается давление в реакторах каталитического риформинга. Смотреть картинку чем создается давление в реакторах каталитического риформинга. Картинка про чем создается давление в реакторах каталитического риформинга. Фото чем создается давление в реакторах каталитического риформинга

В табл. 4 даны объемы систем блоков гидроочистки и риформинга. Эти данные необходимы для расчетов расхода водородсодержащего газа и технического азота на период пуска установок и регенерации катализатора. Принципиальные технологические схемы блока, где происходит гидроочистка бензиновых фракций и риформинга практически идентичны. Но имеются некоторые отличия, которые заключаются в основном в аппаратурном оформлении отдельных узлов установок, прежде всего, узлов стабилизации нестабильного катализата риформинга. Для установок, предназначенных для производства высокооктанового компонента автобензина характерно увеличение производственной мощности по перерабатываемому сырью с 300 тыс. т/год до 600 тыс. т/год и до 1000 тыс. т/год, что диктовалось необходимостью увеличения производства высокооктановых автомобильных бензинов. Все установки, предназначенные для производства ароматических углеводородов, имели одинаковую производительность – 300 тыс. т/год по сырью. Установки, рассчитанные на переработку высоконафтенистого сырья, имели реакторные узлы, состоящие из четырех реакторов – четырех ступеней реакции. Это установки типа Л-35-12/300, Л-35-12/300А и Л-35-13/300А. Остальные установки этого рода имели реакторные узлы из трех ступеней реакции.

Катализаторы риформинга

В процессе каталитического риформинга используются катализаторы, основой которых является платина, равномерно распределенная на носителе – оксиде алюминия, промотированном хлором (в редких случаях фтором). Природа активной поверхности катализаторов риформинга базируется на модели бифункционального их действия, предложенной в 1953г. Маилсом. Диспергированная на поверхности носителя платина является катализатором реакций гидрирования-дегидрирования, а носитель – галоидированный оксид алюминия – катализатором реакций кислотно-основного типа – изомеризации, циклизации, крекинга.

Новейшими исследованиями, выполненными в последнее время, было обнаружено, что часть высокодисперсной нанесенной на носитель платины по своим физическим, адсорбционным и химическим характеристикам не соответствует характеристикам металлической платины. Эта платина получила название электронодефицитной и обозначается символом Ptσ в отличие от металлической платины, которая обозначается символом Pt?. Характерной особенностью электронодефицитной платины является ее способность образовывать прочную хемосорбционную связь с молекулами воды. По этому признаку все поверхностные атомы платины на катализаторе различаются на два состояния: Pt? и Ptσ. Эта же характерная особенность электронодефицитной платины позволяет оценивать ее количество на поверхности катализатора.

Главной характерной особенностью электронодефицитной платины Ptσ является ее высокая активность в реакции дегидроциклизации парафиновых углеводородов – основополагающей реакции процесса каталитического риформинга бензиновых фракций. Скорость реакции дегидроциклизации парафиновых углеводородов с участием платины Ptσ в десять-пятнадцать раз выше скорости с участием металлической платины Pt?. Электронодефицитная платина Ptσ входит в состав поверхностных комплексов PtClxOyLz, являющихся продуктами сильного взаимодействия предшественника платины с поверхностными группами и дефектами γ- или η-оксидов алюминия,являющегося основным носителем катализаторов риформинга. Характерными признаками состояния Ptσ являются предельная дисперсность, ионные состояния платины, наличие лигандов L, связанных с носителем, отсутствие связи Pt-Pt,высокая устойчивость к спеканию. Установлена линейная зависимость между константой скорости дегидроциклизации парафинового углеводорода и содержанием платины Ptσ в катализаторе, что дает основание отнести Ptσ к активным центрам ароматизации парафинов, обладающих комплексом свойств, обуславливающих высокую активность и селективность действия в сложной реакции дегидроциклизации парафиновых углеводородов.

Разработанные технологии приготовления современных катализаторов риформинга направлены на получение катализаторов с максимальным содержанием электронодефицитной платины Ptσ. Наиболее активные и стабильные современные промышленные катализаторы содержат в своем составе до 55 % Ptσ от общего содержания платины в катализаторе.

Большинство промышленных катализаторов риформинга приготовлено с использованием в качестве носителя γ-Al2O3, обладающей большей термической стабильностью.

Для усиления и регулирования кислотной функции оксид алюминия промотируют галоидом – фтором или хлором. Фторсодержащие катализаторы используются весьма ограниченно, в случаях, когда процесс риформинга осуществляют без предварительной гидроочистки сырья или при высокой влажности. Абсолютное большинство катализаторов риформинга приготовлены на основе хлорированного оксида алюминия. Преимуществом катализаторов, приготовленных на хлорированном оксиде алюминия, является возможность регулирования содержания хлора на поверхности катализаторов, а, следовательно, и уровень их кислотности, непосредственно в условиях эксплуатации. Это объясняется тем, что хлор является подвижным промотором, он слабо связан с поверхностью носителя и легко замещается гидроксилами воды.

Количество хлора на поверхности оксида алюминия определяется равновесием реакции:

Это обстоятельство привело к необходимости во время эксплуатации поддерживать над поверхностью катализатора вполне определенную концентрацию паров воды, при которой в катализаторе содержится оптимальное количество хлора, и которое, как правило, находится в пределах 0,9-1,2 масс. %. Содержание хлора на поверхности катализатора является функцией мольного отношения вода: хлор в зоне реакции, удельной поверхности Al2О3 и прочности удерживания хлора на катализаторе.

чем создается давление в реакторах каталитического риформинга. Смотреть фото чем создается давление в реакторах каталитического риформинга. Смотреть картинку чем создается давление в реакторах каталитического риформинга. Картинка про чем создается давление в реакторах каталитического риформинга. Фото чем создается давление в реакторах каталитического риформинга

Высока роль хлора в создании активной поверхности катализатора, в создании поверхностных комплексов, обеспечивающих стабильную работу катализаторов в жестких условиях процесса. Поверхностные комплексы имеют примерный состав PtσnClxOyLz, где σ=2; n≥1; x+y+z≤4; в качестве лигандов L могут быть ионы S, углеводородные радикалы (влияние реакционной среды).
Наконец, без хлора невозможно восстановление высокой дисперсности платины на носителе в период реактивации платиновых катализаторов.

В настоящее время в промышленной практике используются модифицированные би- и полиметаллические катализаторы риформинга, приготовленные на хлорированном оксиде алюминия, в которых наряду с платиной содержатся другие элементы периодической системы. Модификаторами для катализаторов риформинга являются рений, олово, титан, германий, иридий, свинец, цирконий, марганец.

Основным преимуществом модифицированных полиметаллических катализаторов риформинга является их высокая стабильность, выражающаяся в том, что снижение активности в условиях процесса происходит значительно медленнее, чем у монометаллических платиновых катализаторов.

Поскольку основной причиной дезактивации катализаторов риформинга в цикле реакции является их закоксовывание, повышение стабильности при введении модифицирующих металлов связано с воздействием на процесс коксоотложения. Характер этого воздействия, его механизм зависит от природы применяемого модификатора.
В промышленной практике процесса риформинга наибольшее распространение получили алюмоплатиновые катализаторы, модифицированные рением – платинорениевые катализаторы, в отдельных случаях с добавками третьего компонента.

Информация данного раздела приведена исключительно в справочных целях. Информацию о продукции и услугах ООО «НПП Нефтехим» Вы найдете в разделах Главное меню/Разработки и Услуги .

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *