Таблица брадиса что вычисляет

Здесь четырехзначные математические онлайн таблицы для таких тригонометрических функций как: синусы, косинусы, кроме того вы на нашем сайте вы сможете найти подобные таблицы для тангенсов и котангенсов.

Как пользоваться таблицей Брадиса.

На некоторых примерах рассмотрим, как пользоваться таблицей Брадиса.

sin 7° = 0.1219 (косинусы находятся внизу) cos 82° = 0.1392.

sin 3°42′ = 0.0645 (ниже на изображении отмечено красным) cos 80°24′ = 0.1668.

Обратите внимание, все тоже самое верно и при определении значений тангенса и котангенса.

Далее рассмотрим вариант посложнее, когда угол, который представлен в таблице не указан, значит, нужно выбирать более близкое к нему значение (из значений, которые указаны в таблице синусов и косинусов), а на разницу, которая может составлять 1′,2′,3′, берем поправку из минут (желтая графа), как видно на примере:

sin 3°45′=sin 3°42′+3′=0.0645+0.0009=0.0654 либо

sin 3°45′=sin 3°48′−3′=0.0663−0.0009=0.0654

Таблица брадиса что вычисляет. Смотреть фото Таблица брадиса что вычисляет. Смотреть картинку Таблица брадиса что вычисляет. Картинка про Таблица брадиса что вычисляет. Фото Таблица брадиса что вычисляет

Кроме того, нужно помнить правило: для синуса у поправки неотрицательный знак, а у косинуса неположительный.

cos 80°27′=80°24′+3′=0.1668+(-0.0009)=0.1659 либо

Таблица Брадиса.

Таблица брадиса что вычисляет. Смотреть фото Таблица брадиса что вычисляет. Смотреть картинку Таблица брадиса что вычисляет. Картинка про Таблица брадиса что вычисляет. Фото Таблица брадиса что вычисляет

Таблица разбита на 2 части. В 1-ой части таблицы Брадиса тангенсы от 0° до 75° и котангенсы от 15° до 90° определяются с помощью дополнительных столбиков для 1’, 2’ и 3’ (минуты). Во 2-ой части тангенсы от 75° до 90° и котангенсы от 0° до 15° записаны в таблице с точностью до 1’ угла.

Источник

Математические таблицы Брадиса

Значения, приводимые в математических таблицах Брадиса – результат округления точных значений до второго, третьего или четвёртого знака после запятой. В приведённой таблице, используя «готовые поправки» из трёх колонок справа, можно, путём интерполяции, получить значение тангенса и котангенса для любого острого угла от 0° до 76°, заданного с точностью до минуты.

Пример:
tg 60° 15′ = 1,746 + 0,004 = 1,750 (прибавляется поправка на 3′, равная 0,004, которая берётся из соответствующей правой колонки).

Если избыток данного значения аргумента составляет 4′ или 5′ (т.е. больше половины ступени в 6′), то надо применять поправку на 2′ или на 1′, вычитая её из ближайшего большего значения функции. Это даёт выигрыш в точности, так как малые поправки точнее больших. Например:

Некоторые табличные значения подчёркнуты. Это означает, что целую часть для них надо брать не на этой, а на следующей строчке.

Числа с штрихами (‘), находящиеся в трёх правых колонках, а так же вверху и внизу таблицы – это минуты угловой величины, позволяющие точнее задавать её значение. Математические таблицы Брадиса являются универсальными, и могут применяться при решении задач (в дисциплинах: алгебра, тригонометрия, геометрия, физика) в старших классах общеобразовательной и специализированной школы, в колледжах, в гимназиях и, далее, в высших учебных заведениях, на практике, в работе.

Общие правила вычислений с помощью таблиц Брадиса:

Пример перевода числовых значений из десятых долей градусов в минуты:
10.8° (десять целых и восемь десятых градуса)
8 / 10 = X / 60
X = (8 * 60) / 10 = 48
Итог конвертации: 10.8° = 10° 48′ (десять градусов и сорок восемь минут).

Высокоточные вычисления тригонометрических функций для углов, заданных с точностью до минут и секунд – проводятся на специальных инженерных калькуляторах (в виде компьютерных программ, считающих до 32 разрядов или отдельного счётного прибора) и в электронных таблицах Excel по формуле, записанной в определённом формате. Пример строки с формулой в табличной ячейке для расчёта синуса угла, заданного с минутами и секундами:
E1 = sin (((A1 + B1/60 + C1/3600) * pi()) / 180)
где A1 – число градусов аргумента, заданное в первой строке колонки A.
B1 – минуты;
C1 – секунды.

При отсутствии таблиц Брадиса, инженерного калькулятора и компьютера, значения тригонометрических функций можно посчитать, с произвольно высокой точностью, и на простейшем арифмометре, с помощью аналитических операций сложения, вычитания, умножения и деления по формулам рядов:

В степень – число возводится с помощью многократного перемножения.
Например, аргумент в кубе: x^3 = x*x*x На калькуляторе, после набора числа, последовательно нажимаются кнопки: * = =

Если не нужна высокая точность и требуется быстрое вычисление, используются различные номограммы (нарисованные или напечатанные на бумаге и других материалах), логарифмические линейки и прочие приспособления и инструменты.

Таблицы Брадиса. Тангенсы и котангенсы

tg0′6′12′18′24′30′36′42′48′54′60′ctg1′2′3′
090°
0,000001700350052007000870105012201400157017589°369
0175019202090227024402620279029703140332034988°369
0349036703840402041904370454047204890507052487°369
0524054205590577059406120629064706640682069986°369
06990717073407520769078708050822084008570,087585°369
0,0875089209100928094509630981099810161033105184°369
1051106910861104112211391157117511921210122883°369
1228124612631281129913171334135213701388140582°369
1405142314411459147714951512153015481566158481°369
15841602162016381655167316911709172717450,176380°369
10°0,1763178117991817183518531871189019081926194479°369
11°1944196219801998201620352053207120892107212678°369
12°2126214421622180219922172235225422722290230977°369
13°2309232723452364238224012419243824562475249376°369
14°24932512253025492568258626052623264226610,267975°369
15°0,2679269827172736275427732792281128302849286774°369
16°2867288629052924294329622981300030193038305773°369
17°3057307630963115313431533172319132113230324972°3610
18°3249326932883307332733463365338534043424344371°3610
19°34433463348235023522354135613581360036200,364070°3710
20°0,3640365936793699371937393759377937993819383969°3710
21°3839385938793899391939393959397940004020404068°3710
22°4040406140814101412241424163418342044224424567°3710
23°4245426542864307432743484369439044114431445266°3710
24°44524473449445154536455745784599462146420,466365°4711
25°0,4663468447064727474847704791481348344856487764°4711
26°4877489949214942496449865008502950515073509563°4711
27°5095511751395161518452065228525052725295531762°4711
28°5317534053625384540754305452547554985520554361°4811
29°55435566558956125635565856815704572757500,577460°4812
30°0,5774579758205844586758905914593859615985600959°4812
31°6009603260566080610461286152617662006224624958°4812
32°6249627362976322634663716395642064456469649457°4812
33°6494651965446569659466196644666966946720674556°4813
34°67456771679668226847687368996924695069760,700255°4913
35°0,7002702870547080710771337159718672127239726554°4913
36°7265729273197346737374007427745474817508753653°5914
37°7536756375907618764676737701772977577785781352°5914
38°7813784178697898792679547983801280408069809851°5914
39°80988127815681858214824382738302833283610,839150°51015
40°0,83918421845184818511854185718601863286620,869349°51015
41°8693872487548785881688478878891089418972900448°51016
42°9004903690679099913191639195922892609293932547°61116
43°93259358939194249457949095239556959096230,965746°61117
44°96579691972597599793982798619896993099651,000045°61117
45°1,0000003500700105014101760212024702830319035544°61218
46°0355039204280464050105380575061206490686072443°61218
47°0724076107990837087509130951099010281067110642°61319
48°1106114511841224126313031343138314231463150441°71320
49°15041544158516261667170817501792183318751,191840°71421
50°1,1918196020022045208821312174221822612305234939°71422
51°2349239324372482252725722617266227082753279938°81523
52°2799284628922938298530323079312731753222327037°81624
53°3270331933673416346535143564361336633713376436°81625
54°37643814386539163968401940714124417642291,428135°91726
55°1,4281433543884442449645504605465947154770482634°91827
56°4826488249384994505151085166522452825340539933°101929
57°5399545855175577563756975757581858805941600332°102030
58°6003606661286191625563196383644765126577664331°112132
59°66436709677568426909697770457113718272511,732130°112334
60°1,7321,7391,7461,7531,7601,7671,7751,7821,7891,7971,80429°124
61°1,8041,8111,8191,8271,8341,8421,8491,8571,8651,8731,88128°134
62°1,8811,8891,8971,9051,9131,9211,9291,9371,9461,9541,96327°134
63°1,9631,9711,9801,9881,9972,0062,0142,0232,0322,0412,05026°134
64°2,0502,0592,0692,0782,0872,0972,1062,1162,1252,1352,14525°235
65°2,1452,1542,1642,1742,1842,1942,2042,2152,2252,2362,24624°235
66°2,2462,2572,2672,2782,2892,3002,3112,3222,3332,3442,35623°245
67°2,3562,3672,3792,3912,4022,4142,4262,4382,4502,4632,47522°246
68°2,4752,4882,5002,5132,5262,5392,5522,5652,5782,5922,60521°246
69°2,6052,6192,6332,6462,662,6752,6892,7032,7182,7332,74720°257
70°2,7472,7622,7782,7932,8082,8242,8402,8562,8722,8882,90419°358
71°2,9042,9212,9372,9542,9712,9893,0063,0243,0423,0603,07818°369
72°3,0783,0963,1153,1333,1523,1723,1913,2113,2303,2513,27117°3610
73°3,2713,2913,3123,3333,3543,3763710
3,3983,423,4423,4653,48716°4711
74°3,4873,5113,5343,5583,5823,6064812
3,6303,6553,6813,7063,73215°4813
75°3,7323,7583,7853,8123,8393,8674913
3,8953,9233,9523,9814,01114°51014
tg60′54′48′42′36′30′24′18′12′6′0′ctg1′2′3′

Смотреть, печатать трёхзначные таблицы: синус, косинус угла >>

Список использованной литературы и ссылки на Интернет-ресурсы

Таблицы Брадиса. Москва: Просвещение, 1968 г.

Источник

Тригонометрические функции

Часто используемые значения косинуса

Косинус 0 градусов = 1

Косинус 30 градусов = 0,866025404 = ><2>>

Косинус 45 градусов = 0,707106781 = ><2>>

Косинус 60 градусов = 0,5 = <2>>

Косинус 90 градусов = 0

Таблица Брадиса – синусы и косинусы.

Таблица Брадиса – это таблица, помогающая при вычислениях в решении задач как в школе (на математике, алгебре, геометрии и физике в старших классах), так и в вузах.Таблица Брадиса – синусы и косинусы.

Как пользоваться таблицей Брадиса.

На некоторых примерах рассмотрим, как пользоваться таблицей Брадиса.

sin 7° = 0.1219 (косинусы находятся внизу) cos 82° = 0.1392.

sin 3°42′ = 0.0645 (ниже на изображении отмечено красным) cos 80°24′ = 0.1668.

Обратите внимание, все тоже самое верно и при определении значений тангенса и котангенса.

Далее рассмотрим вариант посложнее, когда угол, который представлен в таблице не указан, значит, нужно выбирать более близкое к нему значение (из значений, которые указаны в таблице синусов и косинусов), а на разницу, которая может составлять 1′,2′,3′, берем поправку из минут (желтая графа), как видно на примере:

sin 3°45′=sin 3°42′+3′=0.0645+0.0009=0.0654 либо

sin 3°45′=sin 3°48′−3′=0.0663−0.0009=0.0654

Таблица брадиса что вычисляет. Смотреть фото Таблица брадиса что вычисляет. Смотреть картинку Таблица брадиса что вычисляет. Картинка про Таблица брадиса что вычисляет. Фото Таблица брадиса что вычисляет

Кроме того, нужно помнить правило: для синуса у поправки неотрицательный знак, а у косинуса неположительный.

cos 80°27′=80°24′+3′=0.1668+(-0.0009)=0.1659 либо

Таблица синусов, косинусов, тангенсов и котангенсов для углов 0, 30, 45, 60, 90, … градусов

Тригонометрические определения синуса, косинуса, тангенса и котангенса позволяют указать значения тригонометрических функций для углов 0 и 90 градусов:
Таблица брадиса что вычисляет. Смотреть фото Таблица брадиса что вычисляет. Смотреть картинку Таблица брадиса что вычисляет. Картинка про Таблица брадиса что вычисляет. Фото Таблица брадиса что вычисляет, а котангенс нуля градусов не определен, и
Таблица брадиса что вычисляет. Смотреть фото Таблица брадиса что вычисляет. Смотреть картинку Таблица брадиса что вычисляет. Картинка про Таблица брадиса что вычисляет. Фото Таблица брадиса что вычисляет, а тангенс 90 градусов не определен.

Таблица брадиса что вычисляет. Смотреть фото Таблица брадиса что вычисляет. Смотреть картинку Таблица брадиса что вычисляет. Картинка про Таблица брадиса что вычисляет. Фото Таблица брадиса что вычисляет

Таблица брадиса что вычисляет. Смотреть фото Таблица брадиса что вычисляет. Смотреть картинку Таблица брадиса что вычисляет. Картинка про Таблица брадиса что вычисляет. Фото Таблица брадиса что вычисляет

Таблица брадиса что вычисляет. Смотреть фото Таблица брадиса что вычисляет. Смотреть картинку Таблица брадиса что вычисляет. Картинка про Таблица брадиса что вычисляет. Фото Таблица брадиса что вычисляет

Основные значения тригонометрических функций, собранные в заполненной выше таблице, желательно знать наизусть, так как они очень часто используются при решении задач.

Тригонометрия. Свойства, графики тригонометрических функций.

Тригонометрия — раздел в математику, изучающий тригонометрические функции и их использование в геометрии.Тригонометрия. Свойства, графики тригонометрических функций.

Прямые тригонометрические функции.

α(град)

α(рад)

5π/12

α(град)

α(рад)

Производные тригонометрические функции.

Полная таблица Брадиса

sin0′6′12′18′24′30′36′42′48′54′60′cos± 1′± 2′± 3′
0,000090°
0,00000017003500520070087010501220140157017589°369
0175019202090227024402620279029703140332034988°369
0349036603840401041904360454047104880506052387°369
05230541055805760593061062806450663068069886°369
069807150732075076707850802081908370854087285°369
0872088909060924094109580976099310111028104584°369
104510631081097111511321149116711841201121983°369
121912361253127112881305132313413571374139282°369
139214091426144414611478149515131531547156481°369
156415821599161616331651668168517021719173680°369
10°173617541771178818051822184185718741891190879°369
11°1908192519421959197719942011202820452062207978°369
12°20792096211321321472164218121982215223322577°369
13°2252267228423231723342351236823852402241976°368
14°241924362453247248725042521253825542571258875°368
15°258826052622263926562672268927062723274275674°368
16°2756277327928072823284285728742892907292473°368
17°292429429572974299300730243043057307430972°368
18°3093107312331431563173319320632233239325671°368
19°325632723289330533223338335533713387340434270°358
20°342343734533469348635023518353535513567358469°358
21°3584363616363336493665368136973714373374668°358
22°3746376237783795381138273843385938753891390767°358
23°3907392339393955397139874003401940354051406766°358
24°406740834099411541314147416341794195421422665°358
25°4226424242584274428943054321433743524368438464°358
26°438443994415443144464462447844934509452445463°358
27°454455545714586460246174633464846644679469562°358
28°469547147264741475647724787480248184833484861°358
29°484848634879489449094924493949554974985560°358
30°55015503504550650755095105512513551559°358
31°51551655185195521522552452555275284529958°257
32°5299531453295344535853735388540254175432544657°257
33°544654615476549550555195534554855635577559256°257
34°559256065621563556556645678569357075721573655°257
35°57365755764577957935807582158355855864587854°257
36°58785892590659259345948596259765996004601853°257
37°601860326046606607460886101611561296143615752°257
38°61576176184619862116225623962526266628629351°257
39°629363076326334634763616374638864016414642850°247
40°6428644164556468648164946508652165346547656149°247
41°65616574658766661366266639665266656678669148°247
42°66916704671767367436756676967826794680768247°246
43°682683368456858687168846896690969216934694746°246
44°6947695969726984699770097022703470467059707145°246
45°707170837096710871271337145715771697181719344°246
46°71937206721872372427254726672787297302731443°246
47°731473257337734973617373738573967408742743142°246
48°743174437455746674787497501751375247536754741°246
49°75477559757758175937604761576277638764976640°246
50°76676727683769477057716772777387749776777139°246
51°777177827793780478157826783778487859786978838°245
52°788789179027912792379347944795579657976798637°245
53°7986799780078018802880398049805980780880936°235
54°8098181118121813181418151816181718181819235°235
55°819282028211822182318241825182618271828182934°235
56°82983831832832983398348835883688377838733°235
57°838783968406841584258434844384538462847184832°235
58°84884984998508851785268536854585548563857231°235
59°85728581859859986078616862586348643865286630°134
60°866866986788686869587048712872187298738874629°134
61°874687558763877187887888796880588138821882928°134
62°88298838884688548862887887888868894890289127°134
63°89189188926893489428949895789658973898898826°134
64°8988899690039011901890269033904190489056906325°134
65°9063907907890859092919107911491219128913524°124
66°913591439159157916491719178918491919198920523°123
67°9205921292199225923292399245925292599265927222°123
68°927292789285929192989304931193179323933933621°123
69°9336934293489354936193679373937993859391939720°123
70°9397940394099415942194269432943894449449945519°123
71°94559461946694729478948394899494959505951118°123
72°9511951695219527953295379542954895539558956317°123
73°9563956895739578958395889593959896039608961316°122
74°961396179622962796329636964196469659655965915°122
75°965996649668967396779681968696996949699970314°112
76°97039707971197159729724972897329736974974413°112
77°974497489751975597599763976797797749778978112°112
78°978197859789979297969799980398069819813981611°112
79°981698298239826982998339836983998429845984810°112
80°9848985198549857986986398669869987198749877011
81°9877988988298859888989989398959898999903011
82°9903990599079919912991499179919992199239925011
83°992599289939932993499369938994994299439945011
84°9945994799499951995299549956995799599969962011
85°99629963996599669968996999719972997399749976001
86°9976997799789979998998199829983998499859986000
87°998699879988998999999999919992999399939994000
88°99949995999599969996999799979997999899989998000
89°999899999999999999991.01.01.01.01.01.0000
90°0,0000

Другие тригонометрические функции.

В современном мире есть 6 базовых тригонометрических функций, которые ниже в таблице указаны вместе с уравнениями, которые связывают их.

Функция

Соотношение

Таблица брадиса что вычисляет. Смотреть фото Таблица брадиса что вычисляет. Смотреть картинку Таблица брадиса что вычисляет. Картинка про Таблица брадиса что вычисляет. Фото Таблица брадиса что вычисляет

Таблица брадиса что вычисляет. Смотреть фото Таблица брадиса что вычисляет. Смотреть картинку Таблица брадиса что вычисляет. Картинка про Таблица брадиса что вычисляет. Фото Таблица брадиса что вычисляет

Таблица брадиса что вычисляет. Смотреть фото Таблица брадиса что вычисляет. Смотреть картинку Таблица брадиса что вычисляет. Картинка про Таблица брадиса что вычисляет. Фото Таблица брадиса что вычисляет

Таблица брадиса что вычисляет. Смотреть фото Таблица брадиса что вычисляет. Смотреть картинку Таблица брадиса что вычисляет. Картинка про Таблица брадиса что вычисляет. Фото Таблица брадиса что вычисляет

Таблица брадиса что вычисляет. Смотреть фото Таблица брадиса что вычисляет. Смотреть картинку Таблица брадиса что вычисляет. Картинка про Таблица брадиса что вычисляет. Фото Таблица брадиса что вычисляет

Таблица брадиса что вычисляет. Смотреть фото Таблица брадиса что вычисляет. Смотреть картинку Таблица брадиса что вычисляет. Картинка про Таблица брадиса что вычисляет. Фото Таблица брадиса что вычисляет

Тригонометрия. Обратные тригонометрические функции. Арксинус.

Как пользоваться таблицей Брадиса косинусов или синусов

Таблица Брадиса для синусов и косинусов даёт значение синуса любого острого угла, содержащего целое число градусов и десятых долей градуса, на пересечении строки, имеющей в заголовке (слева) соответствующее число минут. Так, sin 70° 30`=0.9426. Для получения синусов прочих углов нужна интерполяция, вводящая поправку на равность между данным углом и ближайшим табличным. Эта поправка берется из соответствующего столбца поправок справа (курсив). Она прибавляется к ближайшему меньшему значению синуса, если данный угол превосходит ближайший меньший табличный на 1,2,3 минуты, и отнимается от ближайшего большего табличного синуса в остальных случаях. Например, sin 70° 32`=0,9428, так как 9426+2=9428, и sin 70° 34`= 0,9430, так как 9432-2=9430. Та же таблица синусов и косинусов служит для разыскания косинусов, при чем надо пользоваться нумерацией градусов справа, нумерацией минут снизу и не забывать, что при возрастании острого угла его косинус убывает. Подыскание косинусов можно устранить, звменяя их синусами дополнительных углов.
Значение тангенса любого острого угла, содержащего целое число градусов и минут определяется по табл. если угол заключен между 0° и 76°, и по таблице тангенсов если между 76° и 90. Работа по таблице тангенсов и котангенсов требует применения интерполяции, облегчаемой поправками, помещенными в столбцах справа (курсив) и ничем не отличается от работы таблицы sin и cos. Тангенсы углов, которые больше 76 градусов, содержащих целое число градусов и минут, табл. дает непосредственно (без интерполяции).
Таблицы Брадиса по синусам, косинусам, тангенсам и котангенсам позволяют решать и обратный вопрос, то есть находить острый угол по данному значению его синуса или тангенса.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *