Тегирование трафика что это
Тегирование трафика что это
Локальные сети давно перестали состоять из нескольких абонентских устройств, расположенных внутри одного помещения. Современные сети предприятий представляют собой распределенные системы, состоящие из большего количества устройств разного назначения. Ситуация вынуждает разделять такие большие сети на автономные подсети, в итоге логические структуры сети отличаются от физических топологий. Подобные системы создаются с помощью технологии VLAN (Virtual Local Area Network – виртуальная локальная сеть), которая позволяет разделить одну локальную сеть на отдельные сегменты.
Зачем нужна технология VLAN?
Технология VLAN обеспечивает:
Как работает технология VLAN?
У каждой VLAN-подсети есть свой идентификатор, по которому определяется принадлежность той или иной подсети. Информация об идентификаторе содержится в теге, который добавляется в тело Ethernet-фрейма сети, в которой внедрено разделение на подсети VLAN.
Самый распространенный стандарт, описывающий процедуру тегирования трафика, – это открытый стандарт 802.1 Q. Кроме него есть проприетарные протоколы, но они менее популярны.
Формат Ethernet – фрейма после тегирования:
Тег размером 4 байта состоит из нескольких полей:
Именно по тегу сетевое оборудование определяет принадлежность пакета той или иной сети VLAN, осуществляет фильтрацию пакетов и определяет дальнейшие действия с ними: снять тег и передать на конечное оборудование, отбросить пакет, переслать следующему получателю с сохранением тега. Правила, определяющие действия с пакетом на основе тега, зависят от режима работы порта сетевого оборудования. В свою очередь, режим работы выбирается в соответствии с характеристиками подключаемого оборудования. В системе может присутствовать как оборудование с поддержкой технологии VLAN, так и без нее.
Режимы работы портов коммутаторов
Тип Access назначается порту коммутатора, к которому подключено либо единичное абонентское устройство, либо группа устройств, находящихся в одной подсети. Кроме выбора режима работы порта Access необходимо указать идентификатор VLAN-подсети, к которой будет принадлежать оборудование, находящееся за этим портом.
Коммутатор, получив в порт Access данные от подключенных к нему абонентских устройств, добавит ко всем Ethernet-кадрам общий тег с заданным идентификатором подсети и далее будет оперировать уже тегированным пакетом. Напротив, принимая из основной сети данные, предназначенные Access-порту, коммутатор сверит идентификатор VLAN принимаемого пакета с номером VLAN-подсети этого порта. Если они совпадут, то данные будут успешно переданы в порт, а тег удалён, таким образом, подключенные к порту устройства продолжат работать без необходимости поддержки VLAN. Если же идентификатор не равен номеру подсети, кадр будет отброшен, не позволив передать пакет из «чужой» подсети VLAN.
Помимо задания режима работы и идентификатора VLAN, при конфигурировании Trunk-портов создается список разрешенных для передачи подсетей VLAN, с которым коммутатор сверяется при получении пакетов. Благодаря этому через Trunk-порты могут передаваться пакеты нескольких VLAN-подсетей.
Коммутатор, получив в порт Trunk нетегированные данные, поступит аналогично Access-порту, т.е. промаркирует пакеты идентификатором VLAN-подсети, присвоенном этому порту, и передаст дальше в сеть. При получении пакета с таким же идентификатором VLAN, как и у самого порта, тег будет снят и данные отправлены на абонентское устройство без тега. В случае получения тегированного пакета с идентификатором VLAN, отличающимся от номера, присвоенного порту, коммутатор сравнит идентификатор со списком разрешенных VLAN-подсетей. Если номер будет указан в списке, то данные будут переданы по сети на следующее устройство без изменения тега. В случае, если идентификатор указывает на принадлежность незнакомой подсети VLAN, то пакет будет отброшен.
VLAN на коммутаторах Moxa
ЗАДАЧА:
Необходимо построить общую сеть предприятия с разграничением доступа между технологической сетью, предназначеной для управления и мониторинга технологическими процессами и сетью общего назначения. Кроме того, оборудование одной подсети установлено на территориальном удалении друг от друга.
Организовать подобную систему можно с помщою технологии VLAN. Рассмотрим пример реализации данной задачи на коммутаторах Moxa EDS-510E-3GTXSFP.
Технологию VLAN поддерживают все управляемые коммутаторы Moxa.
Оборудование, которое должно находиться в технологической сети (компьютеры A и C), отнесем в подсеть с идентификатором VLAN 10. Оборудование сети общего назначения отнесем в подсеть с идентификатором VLAN 20 (компьютеры B и D). Обмен между этими подсетями происходить не будет. В то же время из-за удаленного расположения устройств оборудование одной VLAN-подсети подключено к разным коммутаторам и необходимо обеспечить обмен данными между ними. Для этого объединим коммутаторы с помощью Trunk портов и поместим их в отдельную подсеть с идентификатором VLAN 30.
Конфигурирование коммутаторов:
Кроме того, следует обратить внимание на параметр Management VLAN ID – подсеть управления коммутатором. Компьютер, с которого необходимо управлять и следить за состоянием самих коммутаторов, должен находиться в подсети управления, указанной в Management VLAN ID. По умолчанию Management VLAN но для предотвращения несанкционированного доступа к коммутаторам рекомендуется идентификатор VLAN управления менять на любой свободный.
Обмен данными в сети предприятия будет осуществляться в соответствии с правилами обработки пакетов.
Правила обработки пакетов для портов Access
Правила обработки пакетов для портов Trunk
Таким образом, технология VLAN позволит создать гибкую систему предприятия с объединением удаленного оборудования и разграничением доступа между функциональными сегментами сети.
Mikrotik и VLAN
Сразу оговорюсь, что данная статья про Router OS, а не Switch OS.
На мой взгляд, работа с VLAN в Mikrotik освещена хуже всего. Да, конечно есть набор статей на эту тему, например вот:
https://wiki.mikrotik.com/wiki/Manual:Interface/VLAN#InterVLAN_routing (за неуказание при публикации прямой ссылки на официальную доку прям словил хейта в личку)
И тому подобное. Но лично я когда их все читал. У меня не складывалось глубокого понимания, как именно это всё работает, только возможность повторить типовую конфигурацию.
То есть, эти статьи хороши, но на мой взгляд написаны для специалистов по микротикам, которым понадобилось еще и в VLAN. А мне хотелось бы видеть статью, которая для специалистов по сетям, которым надо привычные вещи реализовать на железе Mikrotik. И соответственно, осветить эти вопросы на мой взгляд надо бы с несколько другой стороны. И поскольку я такой статьи не нашел, решил сесть и написать её сам :). Так что и говорить я буду привычные вещи, но другими словами. Итак, приступим.
Рис. 1, виртуальный интерфейс VLAN
Рис. 2, физический порт, добавленный в мост
Рис. 3, автоматически созданный CapsMan’ом порт
Третье, что надо понимать. Если в конфигурации используется мост, он умеет фильтровать теги. Если фильтрация тегов выключена вообще, то не на всех устройствах механизм работы с VLAN вообще будет работать, а если фильтрация запрещает лишние тэги, то искать проблемы можно долго. Лучший вариант на время диагностики поставить галку «VLAN filtering» и «Admit all».
То есть, вписываем тэг «1» в свойства моста, после чего Vlan 1 считается в этом мосту нетегированным и порты, которые в этот мост включены и в свойствах которых прописан тэг 1, не будут пытаться его снимать.
Четвертое. Чтобы мост пропускал тегированный трафик мало поставить галку «Admit all», надо еще и добавить сам мост в конфигурацию VLAN в поле «tagged».
И надеюсь уж последнее, раз уж мы вспомнили эту конфигурацию, то седьмое, казалось бы, никто не мешает из таких портов как в п.6, с которых уже сняты теги на уровне виртуального интерфейса, опять же собрать мост. Таким способом например можно менять тэг между портами. Но есть два «но», во-первых, комбинировать способ из первых пяти пунктов со способом из последних двух не рекомендую категорически, потому что там сам черт ногу сломит. В том смысле, что поиск возможных проблем станет совсем гиблым делом. А во-вторых, как мне подсказали в комментариях, по официальной же документации с этим есть определенные сложности.
Пример работы со всем вышеперечисленным
Рис. 4, неправильная конфигурация
Но у нас шлюз сделан не на микротике, является отдельно стоящей машиной и потому с точки зрения логики сети, микротики к второму влану не подключены, хотя его и раздают. Реализовано это очень просто: на микротике создан единственный бридж с тэгом 1 в свойствах фильтрации. При его создании на вкладке VLAN автоматически появилась первая запись, она описывает конфигурацию по-умолчанию и потому в левом столбике обозначена буквой «D». Далее, мы вручную создали второй VLAN с тэгом 2 и вручную добавили туда порты (Рис. 3).
А в CAPsMAN на вкладке Datapaths создали путь для тэгированного трафика (Рис. 1)
Порт ether1 воткнут в тот же свитч, что и управляющее устройство и схема работает на отлично: трафик от клиента приходит на вайфай, где на него навешивается тэг из-за настройки Datapath, благодаря которой капсман создаёт порт Wlan сразу с тэгом в свойствах, дальше это счастье идёт через мост и в конце тэг не снимается когда трафик проходит через порт eth1, потому что в свойствах порта стоит тэг 1, а потому тэг 2 он просто игнорирует, пропуская пакеты насквозь, дальше тэгированные пакеты уходят в сеть и проходя через любое количество оборудования прямо в таком виде, доходят до сервера, который в курсе, что с ними делать, а потому и ответы шлёт также, с тэгом, с которым они и проходят обратный путь, теряя его только перед уходом «в среду» WiFi.
А всё потому, что несмотря на то, что тегированный трафик, заданный капсманом через бридж идёт. Но «вы не понимаете, это другое», а вообще бридж тегированный трафик режет. И чтобы это исправить, надо применить четвертый постулат из списка выше и исправить конфигурацию вот так (да-да, бридж указан в собственных VLAN-ах во всех строчках и это правильно):
Рис. 5, правильная конфигурация
Теперь всё пингуется и можно настроить остальные вещи типа фильтрации, НАТ и прочее, но это типовые вещи, о которых можно прочитать в других местах и потому выходят за рамки этой статьи.
Краткая инструкция по настройке Vlan-ов
VLAN (аббр. от англ. Virtual Local Area Network) — виртуальная локальная компьютерная сеть, представляет собой группу хостов с общим набором требований, которые взаимодействуют так, как если бы они были подключены к широковещательному домену, независимо от их физического местонахождения. VLAN имеет те же свойства, что и физическая локальная сеть, но позволяет конечным станциям группироваться вместе, даже если они не находятся в одной физической сети. Такая реорганизация может быть сделана на основе программного обеспечения вместо физического перемещения устройств.
На устройствах Cisco, протокол VTP (VLAN Trunking Protocol) предусматривает VLAN-домены для упрощения администрирования. VTP также выполняет «чистку» трафика, направляя VLAN трафик только на те коммутаторы, которые имеют целевые VLAN-порты. Коммутаторы Cisco в основном используют протокол ISL (Inter-Switch Link) для обеспечения совместимости информации.
По умолчанию на каждом порту коммутатора имеется сеть VLAN1 или VLAN управления. Сеть управления не может быть удалена, однако могут быть созданы дополнительные сети VLAN и этим альтернативным VLAN могут быть дополнительно назначены порты.
Native VLAN — это параметр каждого порта, который определяет номер VLAN, который получают все непомеченные (untagged) пакеты.
Для чего это надо?
Есть несколько ситуаций:
1. Банально представим ситуацию есть большая сеть, в районе покрытия этой сети у нас расположено два офиса, их необходимо объединить в одну физическую сеть, при этом общегородская сеть не должна видеть/иметь доступ к офисным тачкам. Данную ситуацию конешно можно разрулить VPN-ами, но на шифрованый трафик порядка 100 мегабит нужно не кислое железо, поэтому рулим vlan-aми.
2. Есть масса подсетей, территориально поделенных по городу, необходимо на каждую подсеть настроить интерфейс, по началу можно конечно обойтись сетевыми картами, но сети имеют свойства разростаться, и что прикажете делать, например в такой ситуации?:
serv:
#
3. Клиенту необходимо выдать блок из 4,8,16 и т.д. и т.п. адресов.
4. Уменьшение количества широковещательного трафика в сети
Каждый VLAN — это отдельный широковещательный домен. Например, коммутатор — это устройство 2 уровня модели OSI. Все порты на коммутаторе, где нет VLANов, находятся в одном широковещательном домене. Создание VLAN на коммутаторе означает разбиение коммутатора на несколько широковещательных доменов. Если один и тот же VLAN есть на разных коммутаторах, то порты разных коммутаторов будут образовывать один широковещательный домен.
И множество других причин/ситуаций в которых это может понадобиться.
5. Увеличение безопасности и управляемости сети
Когда сеть разбита на VLAN, упрощается задача применения политик и правил безопасности. С VLAN политики можно применять к целым подсетям, а не к отдельному устройству. Кроме того, переход из одного VLAN в другой предполагает прохождение через устройство 3 уровня, на котором, как правило, применяются политики разрешающие или запрещающие доступ из VLAN в VLAN.
Как мне это все сделать?
Легко!
Тегирование трафика VLAN
Компьютер при отправке трафика в сеть даже не догадывается, в каком VLAN’е он размещён. Об этом думает коммутатор. Коммутатор знает, что компьютер, который подключен к определённому порту, находится в соответствующем VLAN’e. Трафик, приходящий на порт определённого VLAN’а, ничем особенным не отличается от трафика другого VLAN’а. Другими словами, никакой информации о принадлежности трафика определённому VLAN’у в нём нет.
Однако, если через порт может прийти трафик разных VLAN’ов, коммутатор должен его как-то различать. Для этого каждый кадр (frame) трафика должен быть помечен каким-то особым образом. Пометка должна говорить о том, какому VLAN’у трафик принадлежит.
Наиболее распространённый сейчас способ ставить такую пометку описан в открытом стандарте IEEE 802.1Q. Существуют проприетарные протоколы, решающие похожие задачи, например, протокол ISL от Cisco Systems, но их популярность значительно ниже (и снижается).
Настройка обычно происходит на серверах и на свитчах.
По умолчанию все сетевые устройства находятся в первом (1, default) vlan-e.
Поэтому подними 2-й vlan, с сетью 1
В зависимости от ОСи на сервере vlan-ы конфигурятся по разному.
В данной статье я попробую максимально коротко и четко описать различные способы настройки vlan-ов, на разных ОС.
И так поехали, попробуем на разных ОС сделать одну и ту же задачу — настроить 2-й vlan, с адресным пространством из 64-х адресов, 10.10.10.0/26
Для начала нам необходимо рассчитать маску, бродкастовый адрес и шлюз, в помощь прийдет ipcalc 🙂
Address: 10.10.10.0 00001010.00001010.00001010.00 000000
Netmask: 255.255.255.192 = 26 11111111.11111111.11111111.11 000000
Wildcard: 0.0.0.63 00000000.00000000.00000000.00 111111
=>
Network: 10.10.10.0/26 00001010.00001010.00001010.00 000000 (Class A)
Broadcast: 10.10.10.63 00001010.00001010.00001010.00 111111
HostMin: 10.10.10.1 00001010.00001010.00001010.00 000001
HostMax: 10.10.10.62 00001010.00001010.00001010.00 111110
Hosts/Net: 62 (Private Internet)
Шлюзом сделаем 10.10.10.1
Маска 255.255.255.192 или 26
Broadcast 10.10.10.63
Итого мы получаем на клиентов 61 адрес, 10.10.10.2 — 10.10.10.62
Debian-like:
Нам необходимо поставить пакет vlan
# apt-get install vlan
Далее переходим в /etc/network/
и правим файл с интерфейсами.
# nano interfaces
auto eth0.2 # автоматически поднимаем интерфейс после ребута. eth0 транковый интерфейс в которы подаем vlan
iface eth0.2 inet static
address 10.10.10.1
netmask 255.255.255.192
broadcast 10.10.10.63
поднимаем интерфес:
# ifup eth0.2
Red-Hat-like:
Для ред-хата необходима утилита настройки vlan’ов, ставим утилиту vconfig
[root@notebook
]# yum search vconfig
vconfig.i686 : Linux 802.1q VLAN configuration utility
[root@notebook
]# vconfig add eth0 2
переходим в /etc/sysconfig/network-scripts, создадим файл интерфейса, редактируем его
[root@notebook
]# cd /etc/sysconfig/network-scripts
[root@notebook
]# touch ifcfg-eth0.2
[root@notebook
]# nano ifcfg-eth0.2
DEVICE=eth0.2
VLAN_TRUNK_IF=eth0
BOOTPROTO=static
IPADDR=10.10.10.1
NETMASK=255.255.255.192
BROADCAST=10.10.10.63
ONBOOT=yes
поднимаем интерфейс
[root@notebook
В BSD-like:
ifconfig vlan_device vlan vlan_id vlandev parent_device
ifconfig vlan0 vlan 2 vlandev xl0
ifconfig vlan0 inet 10.10.10.1 netmask 255.255.255.192
Для того чтобы интерфейс автоматически загружался, правим /etc/rc.conf.
cloned_interfaces=»vlan0″ #You need a recent STABLE for this else use:
#network_interfaces=»lo0 vlan0″
ifconfig_vlan0=»inet 10.10.10.1 netmask 255.255.255.192 vlan 24 vlandev xl0″
#Note: If you do not assign an IP Adress to your parent device, you need to
#start it explicitly:
ifconfig_xl0=»up»
Теперь перейдем к более интересному пункту, настройка сетевых коммутаторов.
т.к. коммутаторы 2-го уровня бывают разные я приведу несколько примеров по настройке, на разных коммутаторах разное меню соответственно по разному настраивается, обычно ничего сложного нет, и принцип настройки одинаковый. ситуация серв включен в 1-й порт, необходимо подать 2-й влан в 4,5,6 порты, и во втором порту подать его тегированным.
На D-Link-е:
config vlan default delete 1-26
config vlan default add untagged 1,3,7-24
create vlan Offices tag 2
config vlan Offices add tagged 1,2
config vlan Offices add untagged 4,5,6
save
Пробуем воткнуться в 4 дырочку сетевым устройством и прописать адрес из диапазона 10.10.10.0/26 и банально пингами проверить.
На EdgeCore/LinkSys
Vty-0#configure
Vty-0(config)#vlan database
Vty-0(config-vlan)#
Vty-0(config-vlan)#vlan 2 name Offices media ethernet state active
Vty-0(config-vlan)#exit
Vty-0(config)#interface ethernet 1/1
Vty-0(config-if)#switchport mode trunk
Vty-0(config-if)#switchport allowed vlan add 2 tagged
Vty-0(config-if)#exit
Vty-0(config)#interface ethernet 1/2
Vty-0(config-if)#switchport mode trunk
Vty-0(config-if)#switchport allowed vlan add 2 tagged
Vty-0(config-if)#exit
Vty-0(config)#interface ethernet 1/4
Vty-0(config-if)#switchport mode access
Vty-0(config-if)#switchport allowed vlan add 2 untagged
Vty-0(config-if)#switchport native vlan 2
Vty-0(config-if)#exit
Vty-0(config)#interface ethernet 1/5
Vty-0(config-if)#switchport mode access
Vty-0(config-if)#switchport allowed vlan add 2 untagged
Vty-0(config-if)#switchport native vlan 2
Vty-0(config-if)#exit
Vty-0(config)#interface ethernet 1/6
Vty-0(config-if)#switchport mode access
Vty-0(config-if)#switchport allowed vlan add 2 untagged
Vty-0(config-if)#switchport native vlan 2
Vty-0(config-if)#exit
Vty-0(config)#exit
Vty-0#copy running-config startup-config
; Для проверки запустим
Vty-0#show running-config
Как увеличить трафик с помощью страниц тегов
Страницам тегов на большинстве сайтов внимания уделяется не больше, чем страницам пагинации. А зря! Они позволяют не только структурировать контент и товары, но и привлекать трафик. Рассказываем, как их использовать, чтобы увеличить посещаемость и конверсию сайта.
На страницах тегов находятся списки схожих по какому-то критерию статей или товаров. Подобный контент редко решает интент пользователя, так что сделать такие страницы трафиковыми удаётся далеко не всегда. Однако, это вовсе не означает, что про них нужно забыть, ведь страницы тегов отлично подходят для добавления в структуру сайта низкочастотных ключевых слов и позволяют максимально широко охватить семантическое ядро. С их помощью можно увеличить количество точек входа на сайт и повысить таким образом его посещаемость, а заодно и упростить навигацию по ресурсу и улучшить поведенческие факторы.
Тегирование подходит любым сайтам с большим количеством статей или товаров со схожими характеристиками. В их числе:
Если на сайте много статей или товаров, дополните фильтры системой тегов. Они помогут сгруппировать содержимое по разным признакам. Например, на сайте интернет-магазина они подойдут для создания списков продукции, схожей по какому-то критерию:
Вариантов — масса, вот только чем это отличается от категорий? Последние мы рекомендуем использовать для объединения востребованных видов товаров и привлечения трафика по высокочастотным запросам, а страницы тегов создавать для менее очевидных списков продукции и продвижения по низкочастотным ключевикам. К примеру, если «iPhone» в структуре интернет-магазина — важная категория, то «красные смартфоны» или «кнопочные телефоны» — скорее страницы тегов.
Чтобы пользователь мог быстро и просто попасть на нужную страницу, на сайте должна быть реализована удобная навигация по информации — товарам или публикациям. Для этого теги обычно создают из тех запросов, которые кратко характеризуют контент и упрощают поиск нужных товаров или постов в каталоге. К оформлению страниц тегов обычно применимы все правила, по которым создаются любые другие страницы категорий товаров / блога.
Основные принципы оформления страниц тегов следующие:
Как мы уже говорили, тегировать можно любой контент, схожий по каким-то критериям. Для наглядности покажем, как это реализовано на сайте «Циан». На площадке есть раздел продажи квартир, в который попадают все объявления.
Чтобы среди объявлений было проще найти нужное, на сайте есть удобная система фильтрации по количеству комнат, стоимости и другим характеристикам. Для сочетаний разных свойств на сайте подготовлены отдельные теговые страницы, отвечающие на более узкие запросы. Так, если сложить несколько параметров — например, выбрать «2-комнатные» и «От собственника» — то мы попадём на страницу «Продажа 2-комнатных квартир без посредников в Москве».
В чём смысл такого подхода? Во-первых, это удобно посетителям. Во-вторых, это дополнительная точка входа, с помощью которой на сайте можно привлекать поисковый трафик. Проработав разные группы свойств и создав для них отдельные страницы тегов, можно существенно расширить семантическое ядро и получить посещаемость по низкочастотным запросам.
Важно: не стоит создавать страницы тегов без привязки к семантическому ядру сайта — скорее всего, в результате такой работы вы получите множество мусорных страниц, которые плохо скажутся на продвижении сайта.
Использовать тегирование имеет смысл на крупных площадках с большим количеством публикаций или товаров. Это позволяет сделать сайт более удобным для посетителей, расширить семантическое ядро множеством среднечастотных и низкочастотных запросов и в результате увеличить посещаемость.
Зачем тегировать трафик и создавать vlan’ы?
Здравствуйте!
Не пойму зачем. Вот 2-е топологии:
1) 2)
Отличаются маршрутизатором, подынтерфейсами ну и всё.
Вопрос.
В первой топологии мы создаем vlans, тегируем тем самым пакеты и не даём попасть другим сетям и в другие сети
Во второй топологии благодаря «роутеру на палочке» пакеты доходят до любого устройства в топологии.
Зачем тегировать, если всё равно пакеты доходят до любого устройства используя 2 топологию, а она чаще всего используется?
Зачем тегировать, если всё равно пакеты доходят до любого устройства используя 2 топологию, а она чаще всего используется?
В первой схеме между ВЛАН трафик вообще ходить не будет.
Во второй между ВЛАН будет ходить только целевой трафик. И только в случае, если Вы настроете маршрутизацию между ВЛАН. Служебный вроде бродкастов ходить не будет. + как указано выше у Вас будет инструментарий ацесс листов для управления трафиком.