Техпроцесс процессора что это 14нм
Разбираем мифы о техпроцессах 14 и 7 нм с техноблогером der8auer и размышляем о будущем индустрии
Не нуждающийся в особых представлениях техноблогер Roman Hartung, более известный под ником der8auer, провёл исследования транзисторов в процессорах Intel и AMD, выполненных по нормам технологических процессов 14 и 7 нанометров, соответственно. Для исследования были взяты старшие модели в настольных линейках компаний: Core i9-10900K, выпущенный на собственных мощностях Intel, и Ryzen 9 3950X, изготовленный силами TSMC.
реклама
С помощью сканирующего электронного микроскопа были получены изображения транзисторов в области расположения кеш-памяти второго уровня. Транзисторы кэша были выбраны в качестве эталона для сравнения, поскольку представляют собой стандартизированную структуру и не имеют большого разброса по параметрам в рамках одного блока.
Пристальное изучение полученных изображений полупроводниковой структуры показало несколько любопытных фактов. Так, различия ширины затвора транзистора у 14 и 7 нм техпроцессов оказались минимальны: 24 нм у Intel против 22 нм у AMD, высота затворов так и вовсе оказалась равна на уровне погрешности. Как видим, никакого кратного отличия, на которое намекают маркетинговые наименования техпроцессов, нет.
реклама
Всё это наводит на некоторые мысли. Так, рост производительности процессоров AMD RYZEN вероятнее всего может быть обусловлен в первую очередь именно инженерной работой и совершенствованием архитектуры, а не успехами TSMC в переименовании своих техпроцессов. Следовательно, ощутимый прирост от поколения к поколению будет зависеть от задела к модернизации, избранной AMD технологии чиплетов. Поскольку это первый опыт применения данной компоновки кристаллов, делать какие-то долгосрочные прогнозы сложно, но очевидно, что однажды возможности дальнейшего совершенствования будут исчерпаны, и AMD придётся у перейти к схеме +5% каждый год, либо менять парадигму и искать новые пути развития.
реклама
В то же время переход процессоров Intel на 10 и 7 нм может принести гораздо больший, чем можно предполагать, прирост, поскольку компания не увлекалась маркетингом нанометров, просто добавляя знаки + к своим 14 нанометрам, следовательно, новый техпроцесс может оказаться действительно значительно более продвинутым. Кроме того, Intel уже смотрит в будущее и проводит исследования в области альтернативных методов пространственной компоновки транзисторов и структур кристалла процессора.
Как бы то ни было, становится очевидно, что пресловутые числа в названиях техпроцессов не отражают физической реальности и размеров полупроводниковых элементов. Грядущие 5 и 3 нм от TSMC и Samsung, вероятнее всего, так же будут представлять из себя по сути 7++ и 7+++ технологии. Размеры элементов транзистора уменьшаются незначительно, увеличение плотности размещения транзисторов на единице площади достигается в первую очередь совершенствованием библиотек элементов, развитием программ-автотрассировщиков, оптимизацией самой структуры и компоновки блоков кристалла.
А значит, опасаться, что уже в текущем десятилетии мы упрёмся в физические ограничения создания транзистора на атомном уровне, не стоит. Тормозом станет, скорее, непомерная стоимость разработки и изготовления более совершенных степперов и проблема с созданием новых сверхмощных источников УФ-излучения. Впрочем, решение, возможно, уже не за горами и кроется в применении новых материалов, в частности соединений германия, гафния, либо графена. Но это уже совсем другая история.
Intel объяснила, почему делает процессоры 14 нм, пока AMD осваивает 5 нм
В 2021 г. почти все свои процессоры Intel выпустит с использованием старой 14-нанометровой топологии. Она не спешит с полным переходом на 10 нм, поскольку этот техпроцесс выкачивает из нее деньги, тогда как 14 нм уже давно окупился и приносит прибыль. Тем временем AMD уже работает над 5-нанометровыми чипами.
Все дело в деньгах
Глава компании Intel Роберт Свон (Robert Swan) официально подтвердил ее зависимость от морально устаревшего 14-нанометрового техпроцесса. Он заявил, что Intel будет делать ставку именно на него еще как минимум год. Тем временем, компания AMD, основной конкурент Intel в сегменте процессоров, начала подготовку к переходу на 5 нм.
В рамках квартальной отчетной конференции Intel Роберт Свон сообщил, компании напрямую выгоден 14-нанометровый техпроцесс, поскольку именно он позволяет компании сокращать свои расходы на производство чипов (Intel, в отличие от AMD, обладает своими фабриками). Свон подчеркнул, что оборудование по выпуску микросхем по 14-нанометровым нормам, давно окупилось, в отличие от 10 нм, на которые Intel пытается перейти с августа 2019 г.
От 10 нм один вред
Сообщив о минимальных расходах на производство чипов по 14-нанометровой технологии, Роберт Свон сделал 10 нм «главным злодеем». По его словам, новые производственные линии еще не окупили всех вложений.
Свон добавил, что операционная прибыль Intel сейчас напрямую зависит именно от 10 нм. Он заявил, что компания сейчас наращивает темпы перехода на новые нормы, что отрицательно сказывается на росте операционной прибыли.
Способность 14 нм приносить Intel деньги привела к тому, что большая часть процессоров, которые она намерена произвести в 2021 г., будет выпушена именно по этим нормам. Точные процентные соотношения Роберт Свон называть не стал.
Проблемы Intel с переходом на 10 нм в некотором роде повторяют трудности, с которыми компания столкнулась при развертывании 14-нанометрового производства. По ее планам, она должна была наладить массовый выпуск таких чипов еще в конце 2013 г. – начале 2014 г., но в итоге все пришлось сдвинуть на год вперед. Таким образом, Intel распространяет 14-нанометровые чипы с I квартала 2015 г.
Intel собирается ускориться
Несмотря на свою зависимость от 14 нанометров, Intel не оставляет попытки полного перехода на 10 нм. Как сообщал CNews, в начале октября 2020 г. она наконец-то запустила свой 10-нанометровый завод Fab 42 в Аризоне (США), на строительство которого ей потребовалось почти 10 лет.
Новая фабрика рассчитана на производство продуктов 10 нм второго и третьего поколений, самых актуальных для Intel на октябрь 2020 г. Ко второму поколению относятся процессоры линеек Ice Lake-U, Ice Lake-SP, Elkhart Lake и Snow Ridge, тогда как третье поколение – это Tiger Lake-U и Tiger Lake-H, дебютировавшие в сентябре 2020 г.
На отчетной конференции Роберт Свон, руководящий Intel с февраля 2019 г. не обошел вниманием проблемы компании с суперсовременным (для нее) 7-нанометровым техпроцессом. Еще в июле 2020 г. в компании официально признали, что ее новых чипов с нормами 7 нм не будет еще как минимум два-три года. Сразу за этим последовало увольнение главы ключевого технологического подразделения Intel Мерти Рендучинтала (Murthy Renduchintala) из компании, а 24 июля 2020 г. из-за задержки с новым техпроцессом стоимость акций Intel рухнула более чем на 10%
Говоря о проблемах с 7 нм, Роберт Свон заявил тогда, что проблема, мешающая его компании освоить новые нормы, уже найдена, и что специалисты Intel работают над его устранением. Теперь же Свон отрапортовал о ее устранении. «Мы все исправили и достигли чудесного прогресса» (we’ve deployed the fix and made wonderful progress), – сказал глава компании.
В чем конкретно заключалась проблема, и как Intel разобралась с ней, Свон не уточнил ни летом 2020 г., ни сейчас. Он также не стал устанавливать новые сроки релиза первых 7-нанометровых чипов, так что они по-прежнему ожидаются не раньше 2022 г., а то и в 2023 г.
Финансовое положение Intel
Серверный сегмент бизнеса Intel показал 7-процентное падение выручки, как и ЦОД-направление, а сегмент интернета вещей – и вовсе 33-процентное. Обвал прибыли в сегменте твердотельной памяти за год составил 11 %, а продажа программируемых матриц принесла на 19 % меньше выручки. После публикации финансового отчета акции Intel упали на 10%.
Рост выручки по итогам III квартала 2020 г. продемонстрировали лишь два направления бизнеса Intel – сегмент клиентских продуктов (+1 %) и подразделение Mobileye (+2 %).
AMD все равно впереди
Даже отсутствие у Intel ее неназванного препятствия на пути к 7 нанометрам не позволяет ей догнать AMD, которая выпускает все свои современные процессоры по этим нормам. У нее нет своих заводов, и производством занимается тайваньская компания TSMC, в 2020 успешно освоившая 5 нм и выпускающая по этой топологии процессор Apple A14.
В первой половине октября 2020 г., как сообщал CNews, AMD провела показ новых процессоров линейки Ryzen 5000, вооруженных новейшей архитектурой Zen 3. Они тоже 7-нанометровые, но в рамках сотрудничества с TSMC AMD уже нацелилась на 5 нм.
Согласно ее дорожной карте, Zen 3 станет последней архитектурой, эксплуатирующей 7 нм. Ей на смену придет Zen 4, уже 5-нанометровая, и ее появление запланировано на 2021 г.
Intel 7 вместо нм. Новые названия техпроцессов: что изменилось?
Содержание
Содержание
Еще несколько лет назад основным критерием при выборе компьютерных комплектующих были характеристики «два ядра, два гига». Теперь грамотность пользователей в сфере электроники значительно повысилась. Поэтому перед покупкой компьютера юзеры стараются узнать скрытые характеристики — какой техпроцесс, какая архитектура, сколько транзисторов, и почему Intel 7 это уже не 10 нм, но еще не 7 нм. Подробности — в статье.
Быстрое развитие рынка электроники заставляет маркетинговые отделы работать активнее инженеров. Требования к производительности растут бесконечно, вместе с ними увеличивается и спрос на обновление. Поначалу производители справлялись с ежегодным наращиванием мощности и эффективности в разумных пределах. У компаний имелся запас прочности на несколько лет вперед. Но в какой-то момент процесс уменьшения транзисторов стал усложняться, и началась гонка за оптимизацией. В итоге появились знаменитые «+++» Intel. Но обо всем по порядку.
Что такое техпроцесс
Каждый знает, как выглядит электронная плата — это текстолит с множеством мелких радиодеталей. Размеры этих элементов и их количество могут отличаться от устройства к устройству. В телевизоре 1970 года транзистор может быть размером с колорадского жука, его современный аналог в новой OLED-панели оказывается не крупнее муравья. Но даже такой транзистор-насекомое является неприлично огромным по меркам современной электроники.
В компьютерных материнских платах используются транзисторы размером с песчинку. В смартфонах некоторые компоненты практически невидимы без микроскопа. Для человека такой масштаб является пределом осязания. Однако для современной электроники это все еще слишком крупно и громоздко. Инженерам приходится уменьшать размеры компонентов до тех пор, пока каждый отдельный элемент не станет практически сопоставим с размерами молекулы. То есть, превратится в наноэлемент.
Из таких наноэлементов и состоят современные микросхемы. Чтобы стало понятнее, достаточно представить, что в процессоре образца 1990-го года использовались транзисторы размером 3 микрометра. Это почти в 30 раз меньше человеческого волоса. В современном чипе Intel Alder Lake используются транзисторы размером 10 нм. Для сравнения, размер молекулы коронавируса составляет 110 нм.
Размер транзисторов и инструкции, по которым они производятся, называются техпроцессом. Чем современнее техпроцесс, тем больше транзисторов умещается в одном и том же объеме. Мы уже подробно обсуждали эту тему с наглядными материалами и сочными цифровыми сравнениями.
Историческая справка
Первая интегральная микросхема появилась в 1958 году. Она представляла собой единый компонент на основе германия, в теле которого было размещено несколько радиоэлементов. Так начался новый этап в развитии электроники. Микросхемы намного упростили производство техники. После изобретения процессора — сложной и «умной» схемы — возможности разработчиков выросли в разы. В этом материале не будем рассматривать первые четырехбитные чипы, а сразу перенесемся в относительно недалекое прошлое.
В 2000 году компания Intel представила новейшую разработку – Pentium 4. Первый чип этого поколения выпускался на 180-нм техпроцессе. На тот момент технология была самой продвинутой. Она позволила производителю увеличить тактовую частоту ядра, а также объем кэша. Правда, слишком высокая плотность компоновки транзисторов стала причиной перегрева и повышенного энергопотребления. Процессоры этого поколения постепенно доработали. Последней моделью стал чип, выполненный на 65 нм. С этого момента процесс уменьшения транзисторов стал замедляться.
С 2006 года Intel стала использовать новую стратегию разработки процессоров под названием «Тик-Так». Теперь производитель не меняет техпроцесс в каждом семействе, а чередует: на «Тик» представляет новые архитектуру и техпроцесс, а на «Так» только оптимизирует архитектуру. Такой способ чередования просуществовал до 2016 года. Он канул в Лету вместе с процессорами Skylake. В тот момент Intel серьезно зависла на «Так» и протащила 14-нм техпроцесс аж до 2020 года, назвав этот период «Оптимизацией».
С тех пор стратегия Intel называется «Процесс-Архитектура-Оптимизация». На этапе «Процесс» компания выпускает новый техпроцесс и новую архитектуру. Следующим этапом становится «Архитектура» — новые процессоры на доработанном техпроцессе. Финальный штрих — «Оптимизация». Здесь компания дорабатывает «обвес» чипа: например, контроллер памяти или графическое ядро.
Как уменьшают транзисторы
Транзистор — это клапан, который регулирует подачу тока. Внутри него есть своего рода заслонка, способная регулировать течение тока в канале. Долгое время производители уменьшали длину канала. Это позволяло им делать транзисторы компактнее и увеличивать плотность размещения полупроводников в кристалле. По размеру этого канала считали техпроцесс — 90 нм, 70 нм, 65 нм.
Как только производители добрались до 22 нм, уменьшать техпроцесс стало невозможно — ток начал протекать сквозь закрытый транзистор. Чтобы решить эту проблему, инженеры начали использовать трехмерные транзисторы FinFET. Раньше полупроводник имел планарную форму, где канал находится в одной плоскости с телом транзистора. Благодаря новой технологии канал удалось поднять выше транзистора и увеличить его Z-высоту. Это позволило снизить количество утечек и продолжить оптимизацию техпроцесса.
После перехода на новую технологию производства исчез единый стандарт измерений техпроцесса. Например, в 14-нм процессорах Intel и Samsung используются каналы разной длины — у Intel длина затвора равна 24 нм, а у Samsung — 30 нм. У каждого производителя процессоров выработалось свое мнение насчет верности измерения. В том числе у Intel, которая избавилась от устаревших нанометров и взяла на вооружение собственные обозначения.
«7» равняется «10»
За последние семь лет Intel произвела девять поколений процессоров на 14-нм архитектуре. Поначалу это не мешало производителю оставаться лидером на рынке. Но после выхода AMD Ryzen на 7-нм транзисторах Intel сдала позиции. Покупатели обратили внимание на «продвинутый» техпроцесс конкурентов.
Однако, несмотря на двукратную разницу в цифровом обозначении, на практике техпроцессы Intel 14 нм и AMD 7 нм практически не отличаются. Как мы писали выше, нанометры в названии техпроцесса уже не играют прежней роли. Отсюда и такие странности в названиях.
Тем не менее пользователи отлично «клюют» на бутафорские цифры. Поэтому производители задумались о смене привычных обозначений. Например, Intel, чтобы исключить недопонимание со стороны пользователей, ввела названия Intel 7 и Intel 4. Скажете — 7 нм и 4 нм? Не тут-то было. Intel 7 — это старый добрый 10 нм Enhanced SuperFin. Производителя легко понять: покупатель не желает снова видеть уже испробованный 10-нм техпроцесс. Люди требуют перехода на 7 нм «как у того производителя».
Однако Intel заявляет, что ее фирменная технология изготовления 10-нанометровых чипов превосходит 7-нм технологию TSMC. Причем компания доказывает это реальными цифрами — теперь инженеры оперируют понятием «плотность». Все предельно просто и понятно: чем выше плотность «заселения» кремния полупроводниками, тем они компактнее и технологичнее.
На одной и той же площади Intel размещает 106 миллиардов 10-нм транзисторов. А вот TSMC не может выйти за пределы 96 миллиардов. Техпроцесс меньше, а транзисторы крупнее — необъяснимый факт из недр маркетингового отдела. Похожие дела обстоят и в отношении будущего Intel 4, который готовится стать конкурентом TSMC 5 нм.
Игра слов
Смена названий техпроцессов — это, прежде всего, рекламный ход. Причем главная причина переименования скрывается где-то в офисе маркетологов. Специалисты манипулируют «хотелками» пользователей, намекая названием «Intel 7» на 7-нм техпроцесс. На самом деле под этой оберткой скрывается улучшенный 10-нм техпроцесс Enhanced SuperFin. Другие производители тоже «не промах» — они называют техпроцесс в нанометрах, но фактически считают «температуру на Марсе». Игра слов и не более.
Mobcompany.info
Сайт о смартфонах и их производителях
Что такое технологический процесс процессора и на что он влияет
Все современные вычислительные технологии базируются на основе полупроводниковой электронной техники. Для ее производства используются кристаллы кремния – одного из самых распространенных минералов в составе нашей планеты. С момента ухода в прошлое громоздких ламповых систем и с развитием транзисторных технологий этот материал занял важное место в производстве вычислительной техники.
Центральные и графические процессоры, чипы памяти, различные контроллеры – все это производится на основе кремниевых кристаллов. Уже полвека основной принцип не меняется, совершенствуются только технологии создания чипов. Они становятся более тонкими и миниатюрными, энергоэффективными и производительными. Главным параметром, который при этом усовершенствуется, является техпроцесс.
Что такое техпроцесс
Практически все современные чипы состоят из кристаллов кремния, которые обрабатываются методом литографии, с целью формирования отдельных транзисторов. Транзистор – ключевой элемент любой интегральной микросхемы. В зависимости от состояния электрического поля, он может передавать значение, эквивалентное логической единице (пропускает ток) или нулю (выступает изолятором). В чипах памяти с помощью комбинаций нулей и единиц (положений транзистора) записываются данные, а в процессорах – при переключении производятся вычисления.
В 14-нм технологии (по сравнению с 22-нм) сокращено количество барьеров, увеличена их высота, уменьшено расстояние между диэлектрическими ребрами
Технологический процесс – это процедура и порядок изготовления какой-либо продукции. В электронной промышленности, в общепринятом значении, это величина, которая указывает на разрешающую способность оборудования, применяемого при производстве чипов. От нее также напрямую зависит размер функциональных элементов, получаемых после обработки кремния (то есть, транзисторов). Чем чувствительнее и точнее оборудование используется для обработки кристаллов под заготовки процессоров – тем тоньше будет техпроцесс.
Что значит числовая величина техпроцесса
В современном полупроводниковом производстве наиболее распространена фотолитография – вытравливание элементов на кристалле, покрытом диэлектрической пленкой, с помощью воздействия света. Именно разрешающая способность оптического оборудования, излучающего свет для вытравливания, и является техпроцессом в общепринятом толковании этого слова. Это число указывает, насколько тонким может быть элемент на кристалле.
Фотолитография – вытравливание элементов на кристалле
На что влияет техпроцесс
Техпроцесс напрямую сказывается на количестве активных элементов полупроводниковой микросхемы. Чем тоньше техпроцесс – тем больше транзисторов поместится на определенной площади кристалла. В первую очередь это значит увеличение количества продукции из одной заготовки. Во вторую – снижение потребления энергии: чем тоньше транзистор – тем меньше он расходует энергии. Как итог, при равном количестве и структуре размещения транзисторов (а значит, и увеличения производительности) процессор будет меньше расходовать энергию.
Минусом перехода на тонкий техпроцесс является удорожание оборудования. Новые промышленные агрегаты позволяют делать процессоры лучше и дешевле, но сами набирают в цене. Как следствие, лишь крупные корпорации могут вкладывать миллиарды долларов в новое оборудование. Даже такие известные компании, как AMD, Nvidia, Mediatek, Qualcomm или Apple самостоятельно процессоров не делают, доверяя это задание гигантам вроде TSMC.
Что дает уменьшение техпроцесса
При уменьшении технологического процесса производитель получает возможность поднять быстродействие, сохранив прежние размеры чипа. К примеру, переход с 32 нм на 22 нм позволил вдвое увеличить плотность транзисторов. Как следствие, на том же кристалле, что раньше, стало возможным размещение не 4, а уже 8 ядер процессора.
Для пользователей главное преимущество заключается в снижении энергопотребления. Чипы на более тонком техпроцессе требуют меньше энергии, выделяют меньше тепла. Благодаря этому можно упростить систему питания, уменьшить кулер, меньше внимания уделить обдуву компонентов.
Схематический прогноз изменения техпроцесса в будущем
Техпроцесс процессоров на смартфонах
Смартфоны требовательны к аппаратным ресурсам и быстро расходуют заряд аккумулятора. Поэтому, для замедления расхода разряда, разработчики процессоров для мобильных устройств стараются внедрять в производство самые новые техпроцессы. К примеру, некогда популярные двухъядерники MediaTek MT6577 производились по техпроцессу 40 нм, а Qualcomm Snapdragon 200 ранних серий изготавливались по 45-нанометровой технологии.
В 2013-2015 годах основным техпроцессом для чипов, используемых в смартфонах, стал 28 нм. MediaTek (вплоть до Helio X10 включительно), Qualcomm Snapdragon серий S4, 400, а также модели 600, 602, 610, 615, 616 и 617 – это все 28 нм. Он же использовался и при изготовлении Snapdragon 650, 652, 800, 801, 805. «Горячий» Snapdragon 810, что интересно, был выполнен по более тонкому техпроцессу 20 нм, но это ему не сильно помогло.
Apple в своем A7 (iPhone 5S) тоже обходилась 20-нанометровой технологией. В Apple A8 для шестого Айфона применили 20 нм, а в модели A9 (для 6s и SE) уже используется новый 16 нм технологический процесс. В 2013-2014 годах Intel делали свои Atom Z3xxx по 22-нанометровой технологии. С 2015 года в производство запустили чипы с 14 нм.
Следующим шагом в развитии процессоров для смартфонов является повсеместное освоение техпроцессов 14 и 16 нм, а дальше стоит ожидать 10 нм. Первыми экземплярами на нем могут стать Qualcomm Snapdragon 825, 828 и 830.