Теплопередача в вакууме возможна за счет чего

Тесла одобряет: ученые нашли новый способ передачи энергии через вакуум

Теплопередача в вакууме возможна за счет чего. Смотреть фото Теплопередача в вакууме возможна за счет чего. Смотреть картинку Теплопередача в вакууме возможна за счет чего. Картинка про Теплопередача в вакууме возможна за счет чего. Фото Теплопередача в вакууме возможна за счет чего

В раннем возрасте большинство детей узнают, что прикосновение к горячей плите может обжечь их. Будь то прямой контакт с горячей поверхностью или лучи Солнца, сфокусированные в одной точке при помощи лупы, болезненные уроки теплопередачи настолько же интуитивны, насколько и незабываемы. Однако теперь ученые открыли новый необычный способ, с помощью которого тепло может перемещаться из точки А в точку Б. Благодаря странным квантово-механическим свойствам пустого пространства, тепло может перемещаться из одного места в другое вообще без помощи излучения.

Говоря простым языком, тепло — это энергия, которая возникает от движений частиц: чем быстрее они движутся, тем они горячее. В космических масштабах большая часть теплопередачи происходит через вакуум благодаря фотонам — частицам света, испускаемыми звездами: именно так Солнце нагревает нашу планету, несмотря на то, что оно находится на расстоянии около 150 миллионов километров от нас. Здесь, на Земле, тепловой поток часто более интимен, и теплопередача происходит через прямой контакт между материалами и поддерживается волнообразными коллективными колебаниями атомов, за которые отвечают квазичастицы — фононы.

Долгое время считалось, что фононы не могут передавать тепловую энергию через пустое пространство; они требуют, чтобы два объекта касались или, по крайней мере, находились во взаимном контакте с подходящей средой, такой как воздух. Именно это позволяет термосам эффективно сохранять тепло: между двумя слоями металла находится вакуум, из-за чего теплообмен между внутренней капсулой с чаем и внешней практически сведен на нет. Тем не менее, ученые годами размышляли о возможности того, что фононы могут передавать тепло через вакуум, ссылаясь на необычный факт: квантовая механика диктует, что пространство никогда не может быть по-настоящему пустым.

Квантовая механика предполагает, что Вселенная по своей природе неточная: принцип неопределенности Гейзенберга гласит, что как бы вы ни старались, вы не сможете определить импульс и положение субатомной частицы одновременно. Следствием этой неопределенности является то, что вакуум никогда не бывает полностью пустым, а вместо этого гудит от квантовых флуктуаций — так называемых виртуальных частиц, которые постоянно появляются и исчезают. «Вакуум никогда не бывает полностью вакуумом», — говорит Сян Чжан, физик из Калифорнийского университета в Беркли и старший автор нового исследования по фононному теплообмену, опубликованного в журнале Nature в декабре прошлого года.

Теплопередача в вакууме возможна за счет чего. Смотреть фото Теплопередача в вакууме возможна за счет чего. Смотреть картинку Теплопередача в вакууме возможна за счет чего. Картинка про Теплопередача в вакууме возможна за счет чего. Фото Теплопередача в вакууме возможна за счет чего
Визуализация квантовых флуктуаций.

Десятилетия назад ученые обнаружили, что виртуальные частицы были не просто теоретическими предположениями, они вполне способны генерировать обнаруживаемые силы. Так, существует эффект Казимира — он описывает силу притяжения, наблюдаемую между определенными объектами в непосредственной близости: например, между двумя зеркалами, расположенными близко друг к другу в вакууме. Из-за того, что между зеркалами могут образовываться только определенные виртуальные фотоны, их световое давление внутри оказывается меньше, чем снаружи зеркал, где могут образовываться любые фотоны — так и возникает сила притяжения.

Отсюда строится вполне простой вывод: если квантовые флуктуации могут привести к возникновению реальных сил, то, возможно, они могут делать и другие вещи, такие как передача тепла без теплового излучения. Чтобы понять, как может работать нагревание фононов с помощью квантовых флуктуаций, представьте себе два объекта с различными температурами, отделенные друг от друга вакуумом. Фононы в более теплом объекте могли бы передавать тепловую энергию виртуальным фотонам в вакууме, которые затем могли бы передавать эту энергию более холодному объекту. Если оба объекта представляют собой по существу скопления колеблющихся атомов, виртуальные частицы могут действовать как микропружины, помогая переносить колебания от одного тела к другому.

Вопрос о том, могут ли квантовые флуктуации действительно помочь фононам переносить тепло через вакуум, «обсуждался теоретиками в течение десятилетия или около того, иногда с совершенно разными оценками силы эффекта», — говорит физик Джон Пендри из Имперского колледжа Лондона, который не принимал участия в новом исследовании. В целом, все сходились на том, что эффект будет заметен с объектами, разнесенными всего на нанометр, объясняет он. А на таких крошечных расстояниях электрические взаимодействия или другие наноразмерные явления между объектами могут легко скрыть этот фононный эффект, что затруднит его измерение.

Чтобы справиться с этой проблемой, Чжан и его коллеги четыре года проводили эксперименты методом проб и ошибок, чтобы понять, смогут ли они достичь фононной теплопередачи в вакууме на масштабах в сотни нанометров. В их экспериментах использовались две мембраны из нитрида кремния, каждая толщиной примерно 100 нанометров. Будучи необычно легкими и тонкими, такие листы упрощали задачу понимания того, как энергия одного листа влияет на другой. Колеблющиеся атомы в листах заставляют каждую мембрану изгибаться взад и вперед на частотах, которые зависят от их температуры.

Теплопередача в вакууме возможна за счет чего. Смотреть фото Теплопередача в вакууме возможна за счет чего. Смотреть картинку Теплопередача в вакууме возможна за счет чего. Картинка про Теплопередача в вакууме возможна за счет чего. Фото Теплопередача в вакууме возможна за счет чего
Схема установки Чжана.

Команда Чжана быстро поняла, что одинаковые листы с разными температурами будут колебаться с разной частотой. В итоге они подобрали размеры мембран таким образом, чтобы при разных температурах (13.85 и 39.35 градусов по Цельсию соответственно) они колебались с одинаковой частотой 191 600 Гц. Два объекта, резонирующих на одной и той же частоте, имеют тенденцию эффективно обмениваться энергией: многим знаком пример резонанса, когда оперный певец подбирает нужную ноту, чтобы заставить бокал шампанского разбиться.

Кроме того, исследователи позаботились о том, чтобы мембраны находились параллельно друг другу на расстоянии в несколько сотен нанометров, и при этом были чрезвычайно гладкими, с дефектами поверхности не более 1.5 нанометров. Закрепленные в вакуумной камере, одна мембрана была сопряжена с нагревателем, а другая — с охладителем. Обе они были покрыты тонким слоем золота для лучшей отражательной способности и были освещены слабыми лазерами, чтобы обнаружить их колебания и, следовательно, и температуру. В процессе эксперимента ученые проверили, что мембраны не обмениваются теплом ни через поверхность, на которой они были закреплены, ни через какое-либо излучение видимого света, ни при помощи какого-либо иного электромагнитного излучения через вакуум.

«Этот эксперимент требовал очень чувствительного контроля температуры и расстояния между пластинами», — говорит Чжан. «Однажды у нас были проблемы с проведением эксперимента летом из-за жаркой погоды, поднявшей температуру в лаборатории. Кроме того, сам эксперимент занимает очень много времени для устранения влияния шумов — для каждого измерения потребовалось четыре часа».

В конце концов, Чжан и его коллеги обнаружили, что когда мембраны были разнесены на расстояние менее 600 нанометров, они начали демонстрировать необъяснимые известными способами теплопередачи изменения температуры. При расстоянии меньше 400 нанометров скорость теплообмена была достаточной для того, чтобы мембраны имели почти идентичную температуру, демонстрируя эффективность нового метода теплопередачи.

Теплопередача в вакууме возможна за счет чего. Смотреть фото Теплопередача в вакууме возможна за счет чего. Смотреть картинку Теплопередача в вакууме возможна за счет чего. Картинка про Теплопередача в вакууме возможна за счет чего. Фото Теплопередача в вакууме возможна за счет чего
Внешний вид установки.

Получив успешные результаты, исследователи смогли рассчитать максимальное количество энергии, передаваемой через вакуум: около 6.5 × 10 –21 джоулей в секунду. При такой скорости теплообмена потребуется около 50 секунд, чтобы передать количество энергии, содержащееся всего в одном фотоне видимого света. Эта цифра может показаться ничтожной, но Чжан отмечает, что это по-прежнему «новый механизм передачи тепла между объектами».

В принципе, звезды могут нагревать свои планеты через этот новый механизм теплопередачи. Однако, учитывая задействованные расстояния, величина этого эффекта будет настолько мала, что, по словам Чжан, практически никак не повлияет на конечные температуры планет.

Если говорить о реальных возможных применениях нового вида теплопередачи, то конечно же можно вспомнить про электронику. «Например, в жестких дисках магнитная головка для чтения и записи перемещается над поверхностью диска на расстоянии всего в три нанометра», — говорит Чжан. «На таком коротком расстоянии новый эффект теплопередачи, как ожидается, будет играть важную роль, и поэтому его следует учитывать при разработке магнитных записывающих устройств».

Чжан также отмечает, что квантовые флуктуации включают в себя не только виртуальные фотоны. «Могут ли квантовые флуктуации гравитационных полей привести к возникновению механизма теплопередачи, который играет определенную роль в космологических масштабах — это интересный открытый вопрос», — говорит Чжан.

Источник

«Поговорим о науке»: учёные открыли явление проводимости тепла через вакуум

Теплопередача в вакууме возможна за счет чего. Смотреть фото Теплопередача в вакууме возможна за счет чего. Смотреть картинку Теплопередача в вакууме возможна за счет чего. Картинка про Теплопередача в вакууме возможна за счет чего. Фото Теплопередача в вакууме возможна за счет чего

Из опубликованного учёными США материала:

Но, как выясняется, тепловая энергия может осуществлять «скачок» на расстояние до 1 микрометра полного вакуума. Причиной учёные считают так называемый эффект Казимира. Упрощённо эффект Хендрика Казимира обычно описывается случаем с двумя кораблями, оказавшимися на расстоянии около 40 м в штормящем море: между кораблями волнение практически исчезло, и это привело к тому, что внешняя сила (волнение на море) начала интенсивно сближать корабли друг с другом.

Профессор машиностроения университета Беркли Сян Чжан:

Теплопередача в вакууме возможна за счет чего. Смотреть фото Теплопередача в вакууме возможна за счет чего. Смотреть картинку Теплопередача в вакууме возможна за счет чего. Картинка про Теплопередача в вакууме возможна за счет чего. Фото Теплопередача в вакууме возможна за счет чего

Отмечается, что некая сила буквально подхватывает колеблющиеся частицы и переносит их на определённое расстояние (которое может быть в тысячи раз больше размеров самих частиц). Вместе с этим идёт и перенос тепловой энергии через вакуум без электромагнитной составляющей.

Это всё равно, как если бы человек подходил к краю пропасти без какого-либо шанса оказаться на другом краю, после чего внешняя сила подхватывала бы его и переносила через пропасть.

Каков потенциал у этого открытия?

В Калифорнийском университете отмечают, что теперь есть возможность создавать так называемый квантовый вакуум для контроля и «извлечения» тепла в интегральных схемах. В свою очередь это может позволить найти метод противодействия перегреву электронных устройств, включая устройства связи, компьютерной техники.

Американский учёный китайского происхождения Ли Хао-Кунь:

Другими словами, очередь – за созданием, например, устройств хранения огромных массивов информации с существенным снижением энергопотребления. Ведь на сегодняшний день основная доля энергии, расходуемой в средствах хранения информации, средствах связи и иных устройствах, приходится на тепло (его выделение). Если «тепловая» составляющая будет сведена к минимуму, цивилизация получит совершенно новое поколение электронных (цифровых) устройств.

Учёные отмечают, что вариант переноса тепловой энергии через то, что мы называем вакуумом, возможен, так как на самом деле абсолютного вакуума не существует. В любой момент времени в кажущемся нам пустым пространстве возникают и исчезают пары частица-античастица, которые в конечном итоге и дают возможность передать тепло.

Учёные говорят о том, что это открытие может «потянуть» за собой и другое – если через «вакуум» может осуществляться теплопроводность (на основании упомянутого эффекта Казимира), то через «пустоту» вполне может распространяться и звук определённых длин волн. С точки зрения классической физики, распространение звука в вакууме до сих пор считалось невозможным.

Источник

Как передать тепло через вакуум без помощи излучения

Теплопередача в вакууме возможна за счет чего. Смотреть фото Теплопередача в вакууме возможна за счет чего. Смотреть картинку Теплопередача в вакууме возможна за счет чего. Картинка про Теплопередача в вакууме возможна за счет чего. Фото Теплопередача в вакууме возможна за счет чего

Теплопередача в вакууме возможна за счет чего. Смотреть фото Теплопередача в вакууме возможна за счет чего. Смотреть картинку Теплопередача в вакууме возможна за счет чего. Картинка про Теплопередача в вакууме возможна за счет чего. Фото Теплопередача в вакууме возможна за счет чего

Физики обнаружили, что две крошечные вибрирующие мембраны могут выравнивать свои температуры, несмотря на то, что между ними находится вакуум, через который, как считалось ранее, невозможно передавать тепло без помощи излучения. Данный тип теплопередачи был предсказан, но до сих пор не осуществлялся.

Вакуум является лучшей теплоизоляционной средой. Но квантовая механика позволяет теплу его преодолеть, говорит физик Кинг Ян Фонг, проводивший исследование в Калифорнийском университете в Беркли. Для расстояний в масштабе нанометров тепло может передаваться через вакуум посредством квантовых флуктуаций — своего рода перемешивания переходных частиц и полей, которое происходит даже в абсолютно пустом пространстве.

Изготовленные из золоченого нитрида кремния, мембраны имеют ширину около 300 микрометров. Исследователи охладили одну мембрану и нагрели другую так, что разница их температур составила около 25 градусов Цельсия. Это вызывало вибрацию мембран: чем теплее мембрана, тем энергичнее она вибрирует. Когда мембраны находились в нескольких сотнях нанометров друг от друга, их температуры, несмотря на вакуум, выравнивались — тепло передавалось от одной к другой.

Тепло передается тремя способами: в результате прямого контакта, конвекции и излучения. Для конвекции необходим теплоноситель — жидкость или газ, выступающие в роли посредника между двумя телами. Передача тепла с помощью излучения возможна и в вакууме — так Солнце греет Землю.

Теперь экспериментально был доказан еще один путь передачи тепла, хотя он осуществляется только на очень малых расстояниях. Данная передача тепла основана на эффекте Казимира: квантовые флуктуации создают силу притяжения между двумя поверхностями, разделенными вакуумом. В квантовой механике пустое пространство никогда не может быть по-настоящему пустым: в нем присутствуют электромагнитные волны, которые могут воздействовать на материалы. В описанном эксперименте две мембраны воздействовали друг на друга: вибрации более горячей заставляли вибрировать более холодную мембрану чаще, из-за чего их вибрации и температуры выровнялись.

Этот новый тип теплопередачи может помочь улучшить характеристики наноразмерных устройств. А тепло — это большая проблема в нанотехнологиях: производительность крошечных микросхем во многом зависит от того, с какой скоростью они способны рассеивать тепло.

Источник

Виды теплопередачи: теплопроводность, конвекция, излучение

Теплопередача в вакууме возможна за счет чего. Смотреть фото Теплопередача в вакууме возможна за счет чего. Смотреть картинку Теплопередача в вакууме возможна за счет чего. Картинка про Теплопередача в вакууме возможна за счет чего. Фото Теплопередача в вакууме возможна за счет чего

1. Существуют три вида теплопередачи: теплопроводность, конвекция и излучение.

Теплопроводность можно наблюдать на следующем опыте. Если к металлическому стержню с помощью воска прикрепить несколько гвоздиков (рис. 68), закрепить один конец стержня в штативе, а другой нагревать на спиртовке, то через некоторое время гвоздики начнут отпадать от стержня: сначала отпадет тот гвоздик, который ближе к спиртовке, затем следующий и т.д.

Теплопередача в вакууме возможна за счет чего. Смотреть фото Теплопередача в вакууме возможна за счет чего. Смотреть картинку Теплопередача в вакууме возможна за счет чего. Картинка про Теплопередача в вакууме возможна за счет чего. Фото Теплопередача в вакууме возможна за счет чего

Это происходит потому, что при повышении температуры воск начинает плавиться. Поскольку гвоздики отпадали не одновременно, а постепенно, можно сделать вывод, что температура стержня повышалась постепенно. Следовательно, постепенно увеличивалась и внутренняя энергия стержня, она передавалась от одного его конца к другому.

2. Передачу энергии при теплопроводности можно объяснить с точки зрения внутреннего строения вещества. Молекулы ближнего к спиртовке конца стержня получают от неё энергию, их энергия увеличивается, они начинают более интенсивно колебаться и передают часть своей энергии соседним частицам, заставляя их колебаться быстрее. Те, в свою очередь передают энергию своим соседям, и процесс передачи энергии распространяется по всему стержню. Увеличение кинетической энергии частиц приводит к повышению температуры стержня.

Важно, что при теплопроводности не происходит перемещения вещества, от одного тела к другому или от одной части тела к другой передается энергия.

Процесс передачи энергии от одного тела к другому или от одной части тела к другой благодаря тепловому движению частиц называется теплопроводностью.

3. Разные вещества обладают разной теплопроводностью. Если на дно пробирки, наполненной водой, положить кусочек льда и верхний её конец поместить над пламенем спиртовки, то через некоторое время вода в верхней части пробирки закипит, а лёд при этом не растает. Следовательно, вода, так же как и все жидкости, обладает плохой теплопроводностью.

Ещё более плохой теплопроводностью обладают газы. Возьмём пробирку, в которой нет ничего, кроме воздуха, и расположим её над пламенем спиртовки. Палец, помещённый в пробирку, не почувствует тепла. Следовательно, воздух и другие газы обладает плохой теплопроводностью.

Хорошими проводниками теплоты являются металлы, самыми плохими — сильно разреженные газы. Это объясняется особенностями их строения. Молекулы газов находятся друг от друга на расстояниях, больших, чем молекулы твёрдых тел, и значительно реже сталкиваются. Поэтому и передача энергии от одних молекул к другим в газах происходит не столь интенсивно, как в твёрдых телах. Теплопроводность жидкости занимает промежуточное положение между теплопроводностью газов и твёрдых тел.

4. Как известно, газы и жидкости плохо проводят теплоту. В то же время от батарей парового отопления нагревается воздух. Это происходит благодаря такому виду теплопроводности, как конвекция.

Если на дно колбы с водой аккуратно через трубочку опустить кристаллик марганцево-кислого калия и нагревать колбу снизу так, чтобы пламя касалось её в том месте, где лежит кристаллик, то можно увидеть, как со дна колбы будут подниматься окрашенные струйки воды. Достигнув верхних слоёв воды, эти струйки начнут опускаться.

Объясняется это явление так. Нижний слой воды нагревается от пламени спиртовки. Нагреваясь, вода расширяется, её объём увеличивается, а плотность соответственно уменьшается. На этот слой воды действует архимедова сила, которая выталкивает нагретый слой жидкости вверх. Его место занимает опустившийся вниз холодный слой воды, который, в свою очередь, нагреваясь, перемещается вверх и т.д. Следовательно, энергия в данном случае переносится поднимающимися потоками жидкости (рис. 69).

Подобным образом осуществляется теплопередача и в газах. Если вертушку, сделанную из бумаги, поместить над источником тепла (рис. 70), то вертушка начнёт вращаться. Это происходит потому, что нагретые менее плотные слои воздуха под действием выталкивающей силы поднимаются вверх, а более холодные движутся вниз и занимают их место, что и приводит к вращению вертушки.

Теплопередача, которая осуществляется в этом опыте и в опыте, изображенном на рисунках 69, 70, называется конвекцией.

Теплопередача в вакууме возможна за счет чего. Смотреть фото Теплопередача в вакууме возможна за счет чего. Смотреть картинку Теплопередача в вакууме возможна за счет чего. Картинка про Теплопередача в вакууме возможна за счет чего. Фото Теплопередача в вакууме возможна за счет чего

Конвекция — вид теплопередачи, при котором энергия передаётся слоями жидкости или газа.

Конвекция связана с переносом вещества, поэтому она может осуществляться только в жидкостях и газах; в твёрдых телах конвекция не происходит.

5. Третий вид теплопередачи — излучение. Если поднести руку к спирали электроплитки, включённой в сеть, к горящей электрической лампочке, к нагретому утюгу, к батарее отопления и т.п., то можно явно ощутить тепло.

Если закрепить металлическую коробочку (теплоприёмник), одна сторона которой блестящая, а другая чёрная, в штативе, соединить коробочку с манометром, а затем налить в сосуд, у которого одна поверхность белая, а другая чёрная, кипяток, то, повернув сосуд к чёрной стороне теплоприёмника сначала белой стороной, а затем чёрной, можно заметить, что уровень жидкости в колене манометра, соединённом с теплоприёмником, понизится. При этом он сильнее понизится, когда сосуд обращён к теплоприёмнику чёрной стороной (рис. 71).

Теплопередача в вакууме возможна за счет чего. Смотреть фото Теплопередача в вакууме возможна за счет чего. Смотреть картинку Теплопередача в вакууме возможна за счет чего. Картинка про Теплопередача в вакууме возможна за счет чего. Фото Теплопередача в вакууме возможна за счет чего

Понижение уровня жидкости в манометре происходит потому, что воздух в теплоприёмнике расширяется, это возможно при нагревании воздуха. Следовательно, воздух получает от сосуда с горячей водой энергию, нагревается и расширяется. Поскольку воздух обладает плохой теплопроводностью и конвекция в данном случае не происходит, т.к. плитка и теплоприёмник располагаются на одном уровне, то остаётся признать, что сосуд с горячей водой излучает энергию.

Опыт также показывает, что чёрная поверхность сосуда излучает больше энергии, чем белая. Об этом свидетельствует разный уровень жидкости в колене манометра, соединённом с теплоприёмником.

Чёрная поверхность не только излучает больше энергии, но и больше поглощает. Это можно также доказать экспериментально, если поднести включённую в сеть электроплитку сначала к блестящей стороне тенлоприёмника, а затем к чёрной. Во втором случае жидкость в колене манометра, соединённом с теплоприёмником, опустится ниже, чем в первом.

Таким образом, чёрные тела хорошо поглощают и излучают энергию, а белые или блестящие плохо испускают и плохо поглощают её. Они хорошо энергию отражают. Поэтому понятно, почему летом носят светлую одежду, почему дома на юге предпочитают красить в белый цвет.

Путём излучения энергия передаётся от Солнца к Земле. Поскольку пространство между Солнцем и Землёй представляет собой вакуум (высота атмосферы Земли много меньше расстояния от неё до Солнца), то энергия не может передаваться ни путём конвекции, ни путём теплопроводности. Таким образом, для передачи энергии путём излучения не требуется наличия какой-либо среды, эта теплопередача может осуществляться и в вакууме.

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. В твёрдых телах теплопередача может осуществляться путём

1) конвекции
2) излучения и конвекции
3) теплопроводности
4) конвекции и теплопроводности

2. Теплопередача путём конвекции может происходить

1) только в газах
2) только в жидкостях
3) только в газах и жидкостях
4) в газах, жидкостях и твёрдых телах

3. Каким способом можно осуществить теплопередачу между телами, разделёнными безвоздушным пространством?

1) только с помощью теплопроводности
2) только с помощью конвекции
3) только с помощью излучения
4) всеми тремя способами

4. Благодаря каким видам теплопередачи в ясный летний день нагревается вода в водоёмах?

1) только теплопроводность
2) только конвекция
3) излучение и теплопроводность
4) конвекция и теплопроводность

5. Какой вид теплопередачи не сопровождается переносом вещества?

1) только теплопроводность
2) только конвекция
3) только излучение
4) только теплопроводность и излучение

6. Какой(-ие) из видов теплопередачи сопровождается(-ются) переносом вещества?

1) только теплопроводность
2) конвекция и теплопроводность
3) излучение и теплопроводность
4) только конвекция

7. В таблице приведены значения коэффициента, который характеризует скорость процесса теплопроводности вещества, для некоторых строительных материалов.

Теплопередача в вакууме возможна за счет чего. Смотреть фото Теплопередача в вакууме возможна за счет чего. Смотреть картинку Теплопередача в вакууме возможна за счет чего. Картинка про Теплопередача в вакууме возможна за счет чего. Фото Теплопередача в вакууме возможна за счет чего

В условиях холодной зимы наименьшего дополнительного утепления при равной толщине стен требует дом из

1) газобетона
2) железобетона
3) силикатного кирпича
4) дерева

8. Стоящие на столе металлическую и пластмассовую кружки одинаковой вместимости одновременно заполнили горячей водой одинаковой температуры. В какой кружке быстрее остынет вода?

1) в металлической
2) в пластмассовой
3) одновременно
4) скорость остывания воды зависит от её температуры

9. Открытый сосуд заполнен водой. На каком рисунке правильно изображено направление конвекционных потоков при приведённой схеме нагревания?

Теплопередача в вакууме возможна за счет чего. Смотреть фото Теплопередача в вакууме возможна за счет чего. Смотреть картинку Теплопередача в вакууме возможна за счет чего. Картинка про Теплопередача в вакууме возможна за счет чего. Фото Теплопередача в вакууме возможна за счет чего

10. Воду равной массы нагрели до одинаковой температуры и налили в две кастрюли, которые закрыли крышками и поставили в холодное место. Кастрюли совершенно одинаковы, кроме цвета внешней поверхности: одна из них чёрная, другая блестящая. Что произойдёт с температурой воды в кастрюлях через некоторое время, пока вода не остыла окончательно?

1) Температура воды не изменится ни в той, ни в другой кастрюле.
2) Температура воды понизится и в той, и в другой кастрюле на одно и то же число градусов.
3) Температура воды в блестящей кастрюле станет ниже, чем в чёрной.
4) Температура воды в чёрной кастрюле станет ниже, чем в блестящей.

11. Учитель провёл следующий опыт. Раскалённая плитка (1) размещалась напротив полой цилиндрической закрытой коробки (2), соединённой резиновой трубкой с коленом U-образного манометра (3). Первоначально жидкость в коленах находилась на одном уровне. Через некоторое время уровни жидкости в манометре изменились (см. рисунок).

Теплопередача в вакууме возможна за счет чего. Смотреть фото Теплопередача в вакууме возможна за счет чего. Смотреть картинку Теплопередача в вакууме возможна за счет чего. Картинка про Теплопередача в вакууме возможна за счет чего. Фото Теплопередача в вакууме возможна за счет чего

Выберите из предложенного перечня два утверждения, которые соответствуют результатам проведённых экспериментальных наблюдений. Укажите их номера.

1) Передача энергии от плитки к коробке осуществлялась преимущественно за счёт излучения.
2) Передача энергии от плитки к коробке осуществлялась преимущественно за счёт конвекции.
3) В процессе передачи энергии давление воздуха в коробке увеличивалось.
4) Поверхности чёрного матового цвета по сравнению со светлыми блестящими поверхностями лучше поглощают энергию.
5) Разность уровней жидкости в коленах манометра зависит от температуры плитки.

12. Из перечня приведённых ниже высказываний выберите два правильных и запишите их номера в таблицу.

1) Внутреннюю энергию тела можно изменить только в процессе теплопередачи.
2) Внутренняя энергия тела равна сумме кинетической энергии движения молекул тела и потенциальной энергии их взаимодействия.
3) В процессе теплопроводности осуществляется передача энергии от одних частей тела к другим.
4) Нагревание воздуха в комнате от батарей парового отопления происходит, главным образом, благодаря излучению.
5) Стекло обладает лучшей теплопроводностью, чем металл.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *