Термоядерный реактор чем опасен

Создать термоядерный реактор на Земле реально. Какие будут последствия?

Ученые, разрабатывающие компактную версию термоядерного реактора, показали в серии исследовательских работ, что он все-таки может работать. В семи рецензируемых статьях, опубликованных во вторник в специальном выпуске The Journal of Plasma Physics, исследователи изложили доказательства того, что проект SPARC добьется успеха и будет производить в 10 раз больше энергии, чем потребляет. Это возродило надежды, что у людей получится имитировать процесс выработки энергии Солнцем. Рассказываем, почему человечеству необходим термоядерный синтез и спасет ли человечество этот проект.

Читайте «Хайтек» в

Зачем нужна термоядерная энергия?

Чтобы предотвратить повышение глобальной температуры более чем на 1,5 градуса по Цельсию в этом веке, международному сообществу придется сократить выбросы углерода на 45% к 2030 году и до нуля к середине века. Между тем, количество выбросов продолжает расти с каждым годом, и процесс этот лишь ускоряется. Сухие цифры: в 2017 рост составил 1,6%, а в 2018 году достиг рекордного уровня, увеличившись на на 2,7%. Что еще хуже — глобальный спрос на энергию, по прогнозам, вырастет примерно на 27% к 2040 году, или на 3 743 млн тонн нефтяного эквивалента (мтнэ). Тонна нефтяного эквивалента является единицей энергии и определяется как количество энергии, выделяющейся при сжигании одной тонны из сырой нефти.

Термоядерный реактор чем опасен. Смотреть фото Термоядерный реактор чем опасен. Смотреть картинку Термоядерный реактор чем опасен. Картинка про Термоядерный реактор чем опасен. Фото Термоядерный реактор чем опасен

А что, если бы было одно энергетическое решение, которое могло бы решить все эти насущные проблемы? Хотя это звучит фантастически, оно существует.

Но есть способ получше.

Что такое термоядерный синтез и как его применить на Земле?

«Достижение контролируемых термоядерных реакций, которые потребляют больше энергии, чем требуется для их генерации, и в промышленных масштабах рассматривается как потенциальный ответ на изменение климата», — объясняет научный корреспондент Натаниэль Гроневольд для Scientific American. «Энергия термоядерного синтеза устранит потребность в ископаемом топливе и решит проблемы прерывистости и надежности, присущие возобновляемым источникам энергии. Энергия будет генерироваться без опасного количества излучения, которое вызывает беспокойство по поводу ядерной энергии деления».

Термоядерный реактор чем опасен. Смотреть фото Термоядерный реактор чем опасен. Смотреть картинку Термоядерный реактор чем опасен. Картинка про Термоядерный реактор чем опасен. Фото Термоядерный реактор чем опасен

Официальные лица Международного термоядерного экспериментального реактора (ИТЭР), многонационального проекта, базирующегося на юге Франции, объявили, что теперь они находятся всего в 6,5 лет от «Первой плазмы», что является исторической вехой. Согласно пресс-релизу на этой неделе, проект ИТЭР, поддерживаемый консорциумом из 35 стран, в настоящее время завершен на 65%. Недавно установленная секция — основание криостата и нижний цилиндр — прокладывает путь для установки токамака, технологической конструкции, выбранной для размещения мощного магнитного поля, которое будет окружать ядро ​​термоядерного синтеза сверхгорячей плазмы.

Проблемы ядерного синтеза

Ядерный синтез так трудно осуществить из-за экстремальных условий — например, в ядре Солнца — которые требуется воспроизвести здесь, на Земле. Как пояснили в Министерстве энергетики США, «термоядерные реакции изучаются учеными, но их трудно поддерживать в течение длительных периодов времени из-за огромного давления и температуры, необходимых для соединения ядер».

Энергия термоядерного синтеза требует удержания очень горячей плазмы под высоким давлением. Для магнитного удержания очень горячей — во много раз более горячей, чем центр Солнца — плазмы требуются сильные магнитные поля. Они должны в 10 раз превышать атмосферное давление на поверхности Земли. Сила магнитного поля является критическим параметром в достижении этих условий, поскольку оно обеспечивает как изоляцию, чтобы поддерживать плазму горячей, так и внешнее давление, чтобы стабильно удерживать ее — и все это без физического контакта между плазмой и поверхностью материала.

Однако на этой неделе надежда на получение чистой энергии снова зажлась.

Проект SPARC

Ученые, разрабатывающие компактную версию ядерного термоядерного реактора, показали в серии исследовательских работ: он должен работать, возродив надежды на то, что давно неуловимая цель имитации произведения Солнцем энергии может быть достигнута и в конечном итоге будет способствовать борьбе с климатом.

Центр плазменных исследований и термоядерного синтеза Массачусетского технологического института в сотрудничестве с частным стартапом Commonwealth Fusion Systems (CFS) разрабатывает концептуальный проект SPARC. Это компактный высоковольтный эксперимент с чистой термоядерной энергией. Как ожидается, SPARC будет размером с существующие термоядерные устройства среднего масштаба, но с гораздо более сильным магнитным полем. Опираясь на законы физики, ученые надеются, что устройство будет производить 50–100 МВт термоядерной мощности. Такой эксперимент станет первой демонстрацией создания чистой энергии и возможностью создания устройства, построенного с использованием новой сверхпроводящей технологии. SPARC вписывается в общую стратегию ускорения разработки термоядерного синтеза за счет использования новых высокополевых высокотемпературных сверхпроводящих (ВТСП) магнитов.

Термоядерный реактор чем опасен. Смотреть фото Термоядерный реактор чем опасен. Смотреть картинку Термоядерный реактор чем опасен. Картинка про Термоядерный реактор чем опасен. Фото Термоядерный реактор чем опасен

Сроки строительства

Ожидается, что строительство реактора под названием SPARC, который разрабатывается исследователями из Массачусетского технологического института и дочерней компанией Commonwealth Fusion Systems, начнется весной следующего года и займет три или четыре года, заявили исследователи и представители компании.

Хотя остается еще много серьезных проблем, компания заявила, что за строительством последуют испытания и в случае успеха строительство электростанции, которая могла бы использовать термоядерную энергию для выработки электроэнергии, начиная с следующего десятилетия.

Этот амбициозный график намного быстрее, чем у крупнейшего в мире проекта по созданию термоядерной энергии, многонационального проекта на юге Франции под названием ИТЭР. Этот реактор строится с 2013 года, и хотя он не предназначен для выработки электроэнергии, ожидается, что к 2035 году он будет давать реакцию синтеза.

Боб Мамгаард, генеральный директор Commonwealth Fusion и один из основателей компании, сказал, что цель проекта SPARC — вовремя разработать термоядерный синтез, чтобы он сыграл роль в смягчении последствий глобального потепления. «Мы сосредоточены на том, чтобы как можно быстрее получить термоядерную энергию», — сказал он.

Термоядерный синтез, в котором легкие атомы собираются вместе при температурах в десятки миллионов градусов для высвобождения энергии, стал для всего мира способом преодоления последствий производства электроэнергии для изменения климата.

Подобно обычной ядерной электростанции деления, которая расщепляет атомы, термоядерная установка не будет сжигать ископаемое топливо и не будет производить выбросы парниковых газов.

Критика проекта

Несмотря на амбиции проекта, препятствия на пути создания машины, способной создавать термоядерную плазму и управлять клубящимся сверхгорячим облаком атомов, которое повреждает или разрушает все, к чему прикасаются, огромны.

Некоторые ученые, которые десятилетиями работали над термоядерной энергией, говорят, что хотя они с энтузиазмом относятся к перспективам Sparc, график может быть попросту нереальным.

«Чтение этих документов (исследовательских работ — прим. ред.) дает мне ощущение, что у разработчиков будет контролируемая термоядерная термоядерная плазма, о которой мы все мечтаем», — заявил Кэри Форест, физик из Университета Висконсина, который не участвует в проекте. Однако он не уверен, что сроки выполнения проекта реальны.

По словам доктора Мумгаарда, SPARC будет намного меньше, чем ITER — размером с теннисный корт, по сравнению с футбольным полем, — и намного дешевле, чем международный проект, который, по официальным оценкам, обойдется примерно в 22 млрд долларов, но и эта цифра — не предел. Компания Commonwealth Fusion, основанная в 2018 году и насчитывающая около 100 сотрудников, на данный момент привлекла 200 млн долларов на свой проект.

Отличия Sparc от ITER

С тех пор как почти столетие назад начались эксперименты по термоядерному синтезу, перспектива создания практического термоядерного устройства, которое может производить больше энергии, чем используется, оставалась неуловимой.

Но, если верить выводам ученых в The Journal of Plasma Physics проект SPARC добьется успеха и будет производить в 10 раз больше энергии, чем потребляет.

Исследование «подтверждает, что проект, над которым мы работаем, скорее всего, будет работать», — заявил Мартин Гринвальд, заместитель директора Центра плазменных исследований и термоядерного синтеза Массачусетского технологического института и один из ведущих ученых проекта. Доктор Гринвальд является основателем Commonwealth Fusion, но в настоящее время не связан с компанией.

SPARC использует тот же тип устройства, что и ITER: токамак, или камера в форме пончика, внутри которой происходит реакция синтеза. Поскольку облако плазмы такое горячее — горячее, чем Солнце, — его необходимо удерживать магнитными силами.

Термоядерный реактор чем опасен. Смотреть фото Термоядерный реактор чем опасен. Смотреть картинку Термоядерный реактор чем опасен. Картинка про Термоядерный реактор чем опасен. Фото Термоядерный реактор чем опасен

ИТЭР делает это с помощью огромных электромагнитных катушек, содержащих сверхпроводящие провода, которые необходимо охлаждать жидким гелием.

Термоядерный реактор чем опасен. Смотреть фото Термоядерный реактор чем опасен. Смотреть картинку Термоядерный реактор чем опасен. Картинка про Термоядерный реактор чем опасен. Фото Термоядерный реактор чем опасен

По словам Гринвальда, SPARC использует преимущества новой электромагнитной технологии, в которой используются так называемые высокотемпературные сверхпроводники, которые могут создавать гораздо более сильное магнитное поле. В результате плазма намного меньше.

Документы показывают, что «этот путь с высоким полем все еще выглядит жизнеспособным», — сказал доктор Гринвальд. «Если мы сможем преодолеть инженерные проблемы, эта машина будет работать так, как мы прогнозируем».

Commonwealth Fusion заявила, что объявит о местонахождении SPARC через несколько месяцев.

Кто еще работает над термоядерной энергией и есть ли надежда?

Commonwealth Fusion — лишь одна из многих компаний, работающих над разработкой и коммерциализацией термоядерной энергии в партнерстве с исследовательскими учреждениями, при поддержке сотен миллионов долларов инвестиций.

Например, компания TAE Technologies, базирующаяся в Южной Калифорнии, работает над конструкцией, в которой используется линейное устройство, которое стреляет двумя облаками плазмы друг в друга для получения термоядерного синтеза.

First Light Fusion, дочерняя компания Оксфордского университета в Англии, использует энергию для сжатия и сжатия термоядерного топлива.

Доктор Форест сказал: используя более сильные магнитные поля, SPARC можно назвать более «консервативным». «Это полностью отличает его от всех стартапов, которые по определению являются более рискованными», — подчеркивает он.

Уильям Дорланд, физик из Университета Мэриленда и редактор журнала The Journal of Plasma Physics, сказал, что журнал попросил представителей некоторых из этих термоядерных проектов «рассказать об их физических основах». По его словам, группа MIT и Commonwealth Fusion быстро согласилась.

«С моей точки зрения, это первая из этих групп, у которой есть частные деньги, которая на самом деле очень ясно говорит о том, что они делают, — сказал доктор Дорланд. — Разумные люди расходятся во мнениях о том, работает ли это. Но я просто счастлив, что они активизировались и рассказывают нам, используя нормальную науку, что происходит», — заключает он.

В конечном итоге каких последствий ждать от разработки термоядерного реактора? Если технологические процессы будут отлажены и контролируемы, это спасет человечество. Чистая энергия от синтеза атомов вместо их деления как минимум обезопасит планету от ядерных отходов.

Что в итоге?

Несмотря на всю опасность и сложность проектов по разработке термоядерного синтеза, непохоже, что у человечества есть какие-то альтернативы. Предел возможностей планеты ограничен, в отличие от потребностей человека. Выполнят ли свои обещания SPARC, ITER или какой-нибудь стартап, покажет время.

Источник

Радиационная опасность: реакторы деления против реакторов синтеза

Термоядерный реактор чем опасен. Смотреть фото Термоядерный реактор чем опасен. Смотреть картинку Термоядерный реактор чем опасен. Картинка про Термоядерный реактор чем опасен. Фото Термоядерный реактор чем опасен

Так ли это? Откровенно говоря, нет. Будущие термоядерные электростанции будут ядерными объектами, со всеми присущими атрибутами (вплоть до экологов, приковывающих себя к заборам), однако разница с АЭС все же есть. Сегодня я попробую сравнить разнообразные аспекты радиационной опасности, исходящей из АЭС и гипотетической ТЯЭС, отталкиваясь от расчетов, проведенных для строящегося токамака ИТЭР.

Термоядерный реактор чем опасен. Смотреть фото Термоядерный реактор чем опасен. Смотреть картинку Термоядерный реактор чем опасен. Картинка про Термоядерный реактор чем опасен. Фото Термоядерный реактор чем опасен
Пример расчета радиационных полей в здании ИТЭР в работе. Видино, что ближе к самому реактору (он находится в белом круге в центре) поля достигают 40 Зв/ч (4000 Р/час).

Итак, прежде всего надо разделить два понятия. Повреждающим организм воздействием обладает ионизирующее излучение, а вот его источником на ядерных объектах служат нестабильные версии атомов — радиоизотопы (еще называемые радионуклиды). Опасность радионуклидов измеряется их радиотоксичностью, т.е. “ядовитостью” при попадании внутрь человека (конкретику по всем радиоизотопам можно посмотреть в библии дозиметристов). Поскольку реально опасные дозировки для некоторых изотопов начинаются с сотен нанограмм(!), то вопросы изоляции радинуклидов от человека носят принципиальный характер. Радиоактивный атом не уничтожить, к нему нет антидота — поэтому тема обращения с радиоактивными отходами (т.е. отходами, содержащими распадающиеся радионуклиды) одна из самых дорогостоящих во всем, что касается ядерной индустрии.

Термоядерный реактор чем опасен. Смотреть фото Термоядерный реактор чем опасен. Смотреть картинку Термоядерный реактор чем опасен. Картинка про Термоядерный реактор чем опасен. Фото Термоядерный реактор чем опасен
Вот, например, герметично одетые инспекторы на АЭС Фукусима Даиичи защищаются от радионуклидов, а не от излучения.

Одноразовая одежда персонала, шлюзование, спец-вентиляция, и спец-спец-вентиляция, установки для выпаривания жидкостей, которыми смываются малейшие следы радиоактивных загрязнений, и цементирования остатка от выпаривания — подобные системы — это ежедневная реальность АЭС, радиохимических заводов и даже медицинских лабораторий, готовящих радиоактивные фармпрепараты.

Термоядерный реактор чем опасен. Смотреть фото Термоядерный реактор чем опасен. Смотреть картинку Термоядерный реактор чем опасен. Картинка про Термоядерный реактор чем опасен. Фото Термоядерный реактор чем опасен
Вот например, изолированная «горячая камера» для радиохимической работы.

Откуда же берутся нестабильные атомы? Из ядерных реакций. Например, в обычном реакторе с водой под давлением (типа ВВЭР) быстрый нейтрон способен выбить из атома кислорода воды 16О протон и превратить его в быстро распадающийся изотоп азота 16N. Тот в среднем за 7 секунд распадется обратно в 16О, попутно излучив квант гамма-радиации. Другим вариантом является цепная реакция деления урана, на которой работает атомный реактор. Каждый раз атом 235U распадается на 2 более легких ядра, и только в незначительном количестве случаев они стабильны, а подавляющее число дочерних продуктов распада — весьма
радиоактивные вещества. Подробнее о всех процессах активации можно почитать в этом обширнейшем документе МАГАТЭ

Термоядерный реактор чем опасен. Смотреть фото Термоядерный реактор чем опасен. Смотреть картинку Термоядерный реактор чем опасен. Картинка про Термоядерный реактор чем опасен. Фото Термоядерный реактор чем опасен
Еще пример изоляции радинуклидов — одноразовая одежда и душ на выходе из потенциально загрязненной зоны на Смоленской АЭС. Таким образом перекрывается возможность выноса за гермопериметр радионуклидов на теле и одежды.

Таким образом, два основных канала наработки радиационного потенциала в ядерном реакторе — это активация всего вокруг нейтронами и наработка радиоактивных продуктов ядерных реакций. Оба эти канала есть в любой АЭС и будет в гипотетической ТЯЭС. Разница только в деталях.

Термоядерный реактор чем опасен. Смотреть фото Термоядерный реактор чем опасен. Смотреть картинку Термоядерный реактор чем опасен. Картинка про Термоядерный реактор чем опасен. Фото Термоядерный реактор чем опасен
Разделка корпуса реактора на части под водой.

Термоядерный реактор чем опасен. Смотреть фото Термоядерный реактор чем опасен. Смотреть картинку Термоядерный реактор чем опасен. Картинка про Термоядерный реактор чем опасен. Фото Термоядерный реактор чем опасен
Еще пример хранения активированных конструкций — реакторные отсеки советских подводных лодок.

Мощность потока радиации от активированных конструкций внутри ИТЭР через сутки после останова будет в пределах 10000-50000 тысяч рентген/час, типичного ядерного реактора — 1000-15000 рентген/час. Такие поля убивают за минуты, поэтому все это добро — радиоактивные отходы, которые после завершения карьеры реактора необходимо разрезать, отсортировать по активности и отправить на хранилища радиоактивных отходов. Самое интересное, что общее количество радиоактивных атомов в этих тысячах тонн составляет всего несколько килограмм (в тяжелых случаях — несколько десятков).

Термоядерный реактор чем опасен. Смотреть фото Термоядерный реактор чем опасен. Смотреть картинку Термоядерный реактор чем опасен. Картинка про Термоядерный реактор чем опасен. Фото Термоядерный реактор чем опасен
Расчет активации конструкций ИТЭР: слева вверху поле в вакуумной камере токамака в зивертах в час через сутки после останова, слева внизу — снижение радиоактивности с годами, справа внизу — снижение радиоактивности, логарифмическая шкала в секундах. Виден расклад по вкладу разнообразных изотопов в радиоактивность.

Стратегия работы с этим радиоактивным наследством выглядит так — подождать 10. 20 лет, пока распадутся самые короткие (а значит и самые активные) изотопы, в т.ч. уменьшится содержания активированного кобальта (знаменитого 60Co из “кобальтовой бомбы” с периодом полураспада 5.3 года), а затем разобрать и рассортировать на отходы, которые можно размешать до безопасного уровня, например стальную арматуру, отходы требующие недолгого хранения и отходы, требующие длительного хранения. Последних набирается обычно порядка 10% от общей массы, и время хранения до распада активированных атомов до безопасных уровней составляет 100. 1000 лет. Довольно много, но дальше мы увидим и совсем другие цифры.

Термоядерный реактор чем опасен. Смотреть фото Термоядерный реактор чем опасен. Смотреть картинку Термоядерный реактор чем опасен. Картинка про Термоядерный реактор чем опасен. Фото Термоядерный реактор чем опасен
Еще одна похожая картинка — активация качественной Nuclear grade нержавеющей стали в ИТЭР-условиях. Цифры даны в зивертах в час/кг, как радиотоксический эквивалент (если начать есть эту сталь) Видно, что хотя за первые 40 лет уровень активности значительно падает, опасной в виде пыли эта сталь остается и через 200 лет.

Ну и конечно, и во время работы реакторов и после их остановки постоянно должен проводится комплекс мероприятий по изоляции радионуклидов внутри герметичных оболочек, для этого предназначеных — барьеров нераспространения. Кроме недешевых конструкционных/эксплуатационных мероприятий (например, на ИТЭР сверлить бетон нельзя, и поэтому весь монтаж выполняется на встроенные при заливке в бетон металлические платы) есть еще и борьба с потенциальными авариями.

Термоядерный реактор чем опасен. Смотреть фото Термоядерный реактор чем опасен. Смотреть картинку Термоядерный реактор чем опасен. Картинка про Термоядерный реактор чем опасен. Фото Термоядерный реактор чем опасен
А вот так выглядит дезактивация радиохимических установок — все заливается полимерной пленкой, которая отдирается от стен вместе с радионуклидами

Интересно, что на сегодня порядка сотни остановленных ядерных реакторов были полностью разобраны, иногда с довольно головоломными приемами, типа “разрезание корпуса реактора под водой роботами” или “залить все монтажной пеной, разрезать на куски и вывести на хранение”. Тем не менее технология эта отработана, и значительная часть из десятков тысяч тонн после сортировки и отделения особо активных частей оказывается годной к переплавке/другому повторному использованию. Особенно преуспели в таких операциях немцы, разобравшие полностью 11 энергетических реакторов и десяток опытных.

Термоядерный реактор чем опасен. Смотреть фото Термоядерный реактор чем опасен. Смотреть картинку Термоядерный реактор чем опасен. Картинка про Термоядерный реактор чем опасен. Фото Термоядерный реактор чем опасен
Пример разбора АЭС до состояния чистого поля.

Термоядерный реактор чем опасен. Смотреть фото Термоядерный реактор чем опасен. Смотреть картинку Термоядерный реактор чем опасен. Картинка про Термоядерный реактор чем опасен. Фото Термоядерный реактор чем опасен
А вот пример долговременного хранилища радиоактивных отходов в бывшей солевой шахте.

Продукты ядерных реакций.

Сегодня в реакторах деления используются примерно одинаковые тепловыделяющие сборки реакторов (ТВС, часто ошибочно называемые ТВЭЛами, твэл — это только часть ТВС). Это изделие весом

700 килограмм, в котором находится

500 кг урана, обогащенного по 235U изотопу до

4,5%, т.е. в каждой ТВС содержится 22-23 кг урана 235 и

Термоядерный реактор чем опасен. Смотреть фото Термоядерный реактор чем опасен. Смотреть картинку Термоядерный реактор чем опасен. Картинка про Термоядерный реактор чем опасен. Фото Термоядерный реактор чем опасен
Пример ТВС реакторов ВВЭР (в центре ТВС-2М, выше ТВСА). В разрезах твэлов видны таблетки оксида урана.

ТВС работает в реакторе 3-4 года и каждый год реактор покидает 30 тонн ОЯТ или около 40 ТВСок. В отработанном топливе содержится почти процент U235 и почти процент плутония. Самое интересное, что это половина плутония, который образовался в ходе кампании — остальное вполне себе сгорело, вырабатывая электроэнергию. Кроме того в ТВС находится 20-25 килограмм продуктов деления (ПД) — примерно 60 разных, часто очень радиоактивных изотопов. Свежая облученная ТВС имеет радиоактивность на уровне миллиона рентген/час,

На этом замечательном видео видно, насколько активна облученная ТВС — виден и поток горячей воды от нее и черенковское излучение от гамма-квантов.

Фактически получается, что за один год в виде ОЯТ реактор выплевывает больше радиационного потенциала, чем накапливается в активированных конструкциях за 50 лет работы. Вторая проблема — это сроки распада радиоактивных продуктов в ОЯТ до безопасного уровня. Если ПД чаще всего имеют не очень большие периоды полураспада (хотя знаменитые стронций 90 и цезий 137 — порядка 30 лет. Например вылетевшие при чернобыльской аварии стронций и цезий на сегодня распались примерно на половину, что бы представлять себе масштабы), через 100 лет начинают доминировать трансурановые продукты — плутоний, нептуний, америций, кюрий (последнии три относят к так называемым минорным актинидам, одной из самых проблемных тем РАО). Страшно радиотоксичные, они имеют периоды полураспада порядка сотен и тысяч лет, а значит ОЯТ будет представлять опасность не меньше нескольких сотен тысяч лет!

Термоядерный реактор чем опасен. Смотреть фото Термоядерный реактор чем опасен. Смотреть картинку Термоядерный реактор чем опасен. Картинка про Термоядерный реактор чем опасен. Фото Термоядерный реактор чем опасен
Радиационный потенциал ОЯТ от времени. FP — продукты деления. Сравните с активированными конструкциями выше!

Термоядерный реактор чем опасен. Смотреть фото Термоядерный реактор чем опасен. Смотреть картинку Термоядерный реактор чем опасен. Картинка про Термоядерный реактор чем опасен. Фото Термоядерный реактор чем опасен
Даже через миллион лет ОЯТ не возвращается к изначальным уровням радиации, определяемым медленным распадом урана.

На фоне запредельного радиационного потенциала ОЯТ (которого на сегодня в мире накоплено порядка 200000 тонн) проблемы активированных конструкций слегка меркнут, правда?

Термоядерный реактор чем опасен. Смотреть фото Термоядерный реактор чем опасен. Смотреть картинку Термоядерный реактор чем опасен. Картинка про Термоядерный реактор чем опасен. Фото Термоядерный реактор чем опасен
Один из самых больших в мире «мокрых» хранилищ ОЯТ. Вспоминается соотвествующий комикс xkcd по этому поводу.

Для ОЯТ есть опция переработки, когда ТВС разделяется на слабоактивированные конструкции, на уран и плутоний, которые можно снова пустить в работу и продукты деления. Таким образом объем отходов снижается примерно в 5 раз, и в реактор идет примерно половина долговременного радиационного потенциала, но это не является окончательным решением. Серьезно рассматривается так же “пережигание” минорных актинидов и плутония в быстрых реакторах, что позволило бы сократить время хранения остатков с сотен тысяч до пары тысячи лет. Однако все это сложные и затратные мероприятия, в итоге даже переработка ОЯТ, и то не полная, существует только в Европе.

Термоядерный реактор чем опасен. Смотреть фото Термоядерный реактор чем опасен. Смотреть картинку Термоядерный реактор чем опасен. Картинка про Термоядерный реактор чем опасен. Фото Термоядерный реактор чем опасен
Кстати, заметную часть отходов переработки составляют

50. 80 килограмм стальных деталей ТВС, которые заметно активированны. С ними поступают вот так.

А что же термоядерные реакторы? “Отходом производства” у них является стабильный гелий-4, которым можно сразу на площадке надувать детские шарики. Правда в работе используется радиоактивный тритий, который сравним по опасности с плутонием (а то, что он легко превращается в воду и встраивается в биологический цикл только добавляет паранойи). В промышленной ТЯЭС будет циркулировать количество трития, сравнимое по общей активности с выбросами в результате Фукусимской или Чернобыльской аварии (десятки мегакюри, что соответствует единицам килограмм трития). Несколько сотен миллиграмм (несколько тысяч кюри) трития, кстати, останется на внутренних поверхностях термоядерного реактора, создавая дополнительные проблемы с их утилизацией. С другой стороны, в промышленных АЭС количество радиоактивных материалов измеряется в гигакюри, правда они в массе своей не такие летучие, как тритий.

Термоядерный реактор чем опасен. Смотреть фото Термоядерный реактор чем опасен. Смотреть картинку Термоядерный реактор чем опасен. Картинка про Термоядерный реактор чем опасен. Фото Термоядерный реактор чем опасен
Специальное стекло, в котором захоранивают радиоактивные отходы, способно противостоять эрозионному воздействию до миллиона лет.

Кроме того, в пользу ТЯЭС играет период полураспада трития — 12 лет (т.е. через 120 лет его количество уменьшится в

1000 раз) и его очень слабое излучение — бета-лучи 12,3 кЭв, которые хорошо экранируются даже 10 см воздуха или толстой перчаткой. Тритий опасен только при попадании внутрь организма. Тем не менее наличие этого изотопа на ТЯЭС потребует массы телодвижений по предотвращению попадания его наружу — специальные изолированные боксы с пониженным давлением, расположенные внутри герметичных помещений, система спецвентиляции, расчет всех путей распространения трития при любых авариях и создание барьеров безопасности на всех этих путях и т.п. и т.д.

Термоядерный реактор чем опасен. Смотреть фото Термоядерный реактор чем опасен. Смотреть картинку Термоядерный реактор чем опасен. Картинка про Термоядерный реактор чем опасен. Фото Термоядерный реактор чем опасен
Прототип системы хранения и раздачи трития ИТЭР — обратите внимания, что она полностью расположена в герметичных перчаточных ящиках.

Подводя итог можно сказать — если бы не ОЯТ, которые с лихвой перекрывают любые другие источники радиационной опасности, то ТЯЭС были бы не “чище”, чем АЭС. Более того, в силу наличия трития и бОльшего веса активированных конструкций, они были бы опаснее. Однако ОЯТ никуда не денется и безопаснее не станет, определяя 99% радиационного потенциала ядерной энергетики, и замена всех реакторов деления на гипотетические термоядерные реакторы уже приведет к заметному снижению потенциала. Второе, гораздо более важное, но сложно осознаваемое преимущество в том, что радиационные проблемы ядерной энергетики будут только нарастать, и через 1000 лет проблема ОЯТ может обрести совершенно другой масштаб, в то время как для ТЯЭС никогда не будет таких нарастающих столетиями проблем с радиоактивными отходами.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *