Тип памяти qlc что это

QLC, TLC, MLC и SLC

следующая новость | предыдущая новость

#Тип_чипов #3D_MLC_(Multi_Level_Cell) MLC_(Multi_Level_Cell) #3D_TLC_(Triple_Level_Cell) #TLC_(Triple_Level_Cell) #QLC

В современных SSD наиболее распространены четыре типа чипов памяти NAND: QLC, TLC, MLC и SLC.

TLC (Triple-Level Cell) – ячейка памяти, способная хранить 3 бита информации. Обладает большей плотностью, но меньшей выносливостью по сравнению с SLC и MLC. TLC также отстает от SLC и MLC по скорости чтения и записи и ресурсу в циклах Program/Erase. До настоящего момента память типа TLC NAND использовалась в основном в flash-накопителях (флешках), однако совершенствование технологий производства сделало возможным использование памяти TLC и в стандартных SSD.

Описанные выше ячейки памяти относятся к планарному, то есть 2D-типу. Их недостатком является необходимость перехода к более тонким техпроцессам для увеличения плотности записи данных в каждом отдельном чипе. Из-за ряда физических ограничений делать это до бесконечности не получится. Поэтому были разработаны 3D-ячейки памяти. Такая ячейка представляет собой цилиндр:

Тип памяти qlc что это. Смотреть фото Тип памяти qlc что это. Смотреть картинку Тип памяти qlc что это. Картинка про Тип памяти qlc что это. Фото Тип памяти qlc что это

Таким образом, появляется возможность разместить несколько ячеек памяти на одном слое микросхемы. Такие ячейки называются 3D V-NAND, 3D TLC и 3D QLC. Емкость и надежность 3D-памяти сравнимы с емкостью и надежностью памяти TLC.

SLC (Single-Level Cells) – ячейка, способная хранить 1 бит информации. Память SLC имеет высокую производительность, низкое энергопотребление, наибольшую скорость записи и количество циклов Program/Erase. Память типа SLC обычно используется в серверах высокого уровня, поскольку стоимость SSD на основе SLC велика.

3D NAND

Тип памяти qlc что это. Смотреть фото Тип памяти qlc что это. Смотреть картинку Тип памяти qlc что это. Картинка про Тип памяти qlc что это. Фото Тип памяти qlc что это

Количество состояний ячейки в зависимости от типа памяти

Физически все четыре типа ячеек NAND-памяти состоят из одинаковых транзисторов. Единственным отличием является количество хранимого ячейкой памяти заряда. Все четыре типа ячеек работают одинаково: при появлении напряжения ячейка переходит из состояния «выключено» в состояние «включено». SLC использует два отдельных значения напряжения для представления одного бита информации на ячейку и двух логических уровней (0 и 1). MLC использует четыре отдельных значения напряжения для представления четырех логических состояний (00, 01, 10, 11) или двух битов. TLC использует восемь отдельных значений напряжения для представления восьми логических состояний (000, 001, 010, 011, 100, 101, 110, 111) или трех битов информации. QLC использует шестнадцать отдельных значений напряжения для представления шестнадцати логических состояний (от 0000 до 1111).

Поскольку в SLC используется только два значения напряжения, эти значения могут сильно отличаться друг от друга, уменьшая потенциальную возможность некорректно интерпретировать текущее состояние ячейки и позволяя использовать стандартные условия коррекции ошибки NAND. Вероятность ошибок чтения увеличивается при использовании TLC и QLC NAND, поэтому данные типы памяти требуют большего объема ECC (Error Correction Code – код коррекции ошибок) при исчерпании ресурса NAND, поскольку в TLC и QLC приходится корректировать сразу три или четыре бита информации соответственно.

Источник

реклама

Появившись намного ранее флэш-памяти, Solid State Drive стал накопителем информации, не содержащим каких-либо механических компонентов. Пионером в создании стала корпорация Dataram, представив для промышленных целей SSD Bulk Core в 1976 году. Он содержал в себе 8 планок энергозависимой RAM-памяти, каждая из которых имела объем 256 килобайт. Стоимость составляла 9700 долларов США. Работал, был востребован, но из-за уязвимости данных высокого авторитета в соответствующих кругах не заслужил.

Потребительский класс стали завоевывать в 1982 году, оснастив компьютер Apple II внешним накопителем RAM Disk, который стоил дороже самого компьютера, поэтому пользователями был принят с большой осторожностью, несмотря на агрессивную рекламу.

Далее, в силу собственного характера и темперамента, я пропущу историю создания и распространения флеш-памяти, пропущу и пересказ того, как был создан первый SSD на ее основе. Всю эту информацию с легкостью можно почерпнуть в сети, готовясь к какому-нибудь докладу или создавая презентацию по теме. А вот на видах и классификациях современных SSD мы с вами задержимся:

Память

реклама

Флеш-память различается методом соединения ячеек в массив. И имеет 2 конструкции: NOR и NAND.

NAND-тип флеш-памяти нам максимально интересен и он был анонсирован Toshiba в 1989 году на International Solid-State Circuits Conference.

1. Планарный тип или 2D.

реклама

реклама

Важной особенностью линии развития памяти в цепочке SLC-MLC-TLC является увеличение уровней ячеек. Но. резко падает выносливость, грубо говоря до серьезных цифр (на порядки) падает число циклов полной перезаписи. Да и скорость падает. Прямо регресс какой-то. Успокаивает то, что цена тоже падает и, как это ни странно, падает ощутимо. Плюс растет качество контроллеров, да всегда уменьшается техпроцесс. Впрочем, чтобы глубоко не погружаться в технические джунгли самому и не замучить вас, мои читатели, скажу, что эти страшные цифры снижения выносливости с переходом применения памяти от одной к другой вряд ли будут опасны для простого пользователя. Этих цифр хватит, чтобы мы с вами пользовались своим новым SSD много лет. Другое дело сервера и рабочие станции. Тут уж не грех и про эту самую «выносливость» подумать. Но и производители не дремлют. Линейка PRO некоторых производителей, например, говорит нам о том, что диск на основе MLC прослужит долго при максимальных нагрузках, но и стоить будет значительно дороже аналога на TLC. Подведя промежуточный итог на этапе рассказа о типах памяти скажем так: SLC получила распространение в корпоративном сегменте, TLC стала безусловным монополистом в рознице, а продукция на основе MLC ориентирована, в первую очередь, на тех, кто ценит надежность и при этом хочет выжать все возможное из своей машины.

Все бы так и оставить, но потенциал двумерной NAND оказался ограничен. С этого я начал свой рассказ о памяти. Когда возможности 15-нанометрового технологического процесса были практически исчерпаны, а дальнейшее совершенствование программной части перестало обеспечивать сколь-либо заметного прироста важнейших показателей, на смену планарным микросхемам пришла флэш-память 3D NAND.

2. 3D NAND

После того, как мы поговорим чуточку о другом, к видам памяти мы еще вернемся, да и у вас, мои дорогие читатели, появится повод дочитать мои размышления до конца.

А поговорим мы о физическом интерфейсе подключения и форм-факторе, что иногда одно и тоже, в свете разговора о пропускной способности. И здесь мы начнем с маленькой, но важной закономерности. Неважно сколько лет мы подключаем свои HDD к шине для накопителей, важно, что сможет позволить этот интерфейс нашей памяти. С какой скоростью он позволяет обмениваться информацией? Вспомним азбучные вещи:

1. IDE / SATA/

Кому-то интересно будет узнать, что IDE SSD тоже были как в форм-факторе 2,5 дюйма, так и 3,5, а вот список привычных интерфейсов пользовательского уровня для внутренних носителей: SATA 2 интерфейс обратно совместим и поддерживается на SATA 1 портах. SATA 3 интерфейс обратно совместим и поддерживается на SATA 1 и SATA 2 портах. Однако максимальная скорость диска будет медленнее из-за скоростных ограничений порта.

Как эти азбучные данные применить к размышлениям о SSD? А вот как:
Например, SanDisk Extreme SSD поддерживает интерфейс SATA 6 Гбит/с и при подключении к портам SATA 6 Гбит/с может доходить до 550/520MБ/s последовательного чтения и последовательной записи соответственно. Однако, когда диск подключен к порту SATA 3 Гбит/с, она может доходить до 285/275MБ/s последовательного чтения и последовательной записи соответственно. В любом случае, это будет много быстрее, чем использование даже самого скоростного HDD.

Дальше возник совершенно простой вопрос. Поскольку память для SSD способна работать и на гораздо больших скоростях, а развитие и физические возможности интерфейса SАТА и всех его итераций исчерпали себя, то надо дать что-то другое данным носителям информацми. Дать новое или уже имеющееся и применяемое. Кстати, несмотря на то, что SАТА для HDD вполне достаточный интерфейс, задумывались о новом, как раз для HDD дисков. А применять стали для SSD. Что же нашли? А вот что:

Далее я просто приведу пример других известных форм-факторов без комментариев. Потом вернемся к обсуждению новейших видов памяти с привязкой ее к этим форм-факторам и их интерфейсам. Мне кажется, что так нам будет легче внести ясность в предмет обсуждения:

Экзотику лишь упомянем. Это, например, накопитель, который вставляют прямо в слот оперативной памяти

Еще один, который сейчас редко встретишь. SATA-Express, с интерфейсом, использующим 2 линии PCI-Express, что позволяет достигать максимальной пропускной способности в 2 ГБ. Реализации не нашел. Сейчас SSD-диски M.2 (забегая немного вперед) могут использовать 4 линии PCI-Express с пиковой пропускной способностью 4 ГБ/с. Для подключения используется специальный кабель.

2. mSATA

3. PCI-E AIC (add-in-card)

4. U.2

двигаемся дальше и поговорим о

это новый стандарт SSD-накопителей. Обычные SSD различных форм-факторов работают по интерфейсу SATA, который передает информацию медленнее, чем на это способен сам накопитель. NVMe работает по интерфейсу PCI Express, производительности которого нам за глаза хватает. Диск NVMe выдает бо́льшую скорость чтения-записи данных.

Плывя по течению простых рассуждений о твердотельных накопителях, мы приближаемся к финалу повествования и вновь вспоминаем мою короткую историю в самом начале. OPTANE+QLC. Надо разобраться. Для этого мы мысленно возвращаемся в раздел Память. Начнем с несколько противоречивого лично для меня этапа развития памяти:

3D NAND QLC.

OPTANE. Intel Optane. Optane Memory.

Что сказать? Младшая версия обойдется нам от 25000 рублей, старшая в 2 раза дороже. Еще раз подчеркну, что здесь мы имеем бескомпромиссную скорость, заявленную надежность, хорошую гарантию и тот объем, который мы захотим себе позволить (из имеющихся).

Я, начиная свой рассказ c прочтенной когда-то рекламы, и поверхностно погрузив вас в тонкости информации о SSD, принял для себя решение о том, какой SSD я бы хотел иметь в своем компьютере. И я приобрел его. Это «всего лишь»:

Безусловно пора заканчивать. В самом финале скажу следующее:

2. Мною не тестировался приобретенный накопитель. Такие тесты уже есть. Плюс, я даже не сказал, какой накопитель у меня был до этого. Не было такой цели.

3. Попытался рассказать попроще о довольно сложном. Возможно, данный материал здесь, учитывая высокий уровень теоретической и практической подготовки наших читателей, поможет кому-то ответить на еще не возникшие вопросы.

Источник

Новый тип памяти решит сразу две проблемы SSD-накопителей

Современные SSD с памятью стандарта QLC дешевле своих предшественников, но не могут похвастаться высокой скоростью работы и рекордным сроком службы. С другой стороны, цена SLC-моделей кусается, и в потребительском сегменте их почти не найти. Компания NEO Semiconductor запатентовала технологию X-NAND, призванную решить главные проблемы обоих типов ячеек, чтобы сбалансировать цену и характеристики будущих накопителей.

Тип памяти qlc что это. Смотреть фото Тип памяти qlc что это. Смотреть картинку Тип памяти qlc что это. Картинка про Тип памяти qlc что это. Фото Тип памяти qlc что это

Важная проблема SSD заключается в снижении производительности и отказоустойчивости при росте количества бит на ячейку. Так, память SLC предлагает более высокую скорость записи и большую долговечность, но и обходится в круглую сумму. В то же время TLC и QLC стоят ощутимо дешевле, но имеют не столь внушительные характеристики, поэтому вендорам приходится использовать SLC-кеш или отдельные модули DRAM, чтобы добиться хорошей производительности накопителей.

По сравнению с традиционными многоуровневыми конструкциями ячеек, X-NAND предполагает использование одного буфера для работы сразу с несколькими линиями ячеек. По заверению разработчиков, в теории переход на X-NAND может увеличить скорость чтения данных до 27 раз по сравнению с «обычной» QLC, при этом скорость последовательной записи может вырасти в 15 раз, а случайного чтения и записи — в 3 раза. Кроме того, за счёт уменьшения размера кристалла благодаря большему количеству слоёв ячеек, улучшится энергоэффективность SSD.

Тип памяти qlc что это. Смотреть фото Тип памяти qlc что это. Смотреть картинку Тип памяти qlc что это. Картинка про Тип памяти qlc что это. Фото Тип памяти qlc что это

Проблему падения скорости при таком подходе NEO Semiconductor предложила использовать с помощью технологии параллельного программирования ячеек. Так, при записи в SLC-буфер одновременно происходит процесс перемещения данных в TLC/QLC/PLC-области. Таким образом, накопителю удастся избежать снижения производительности, возникающего при переполнении SLC-кеша.

Сейчас NEO Semiconductor принадлежат два патента на новую технологию — компания намерена продвигать разработку на рынок, предлагая лицензию производителям чипов памяти и комплектующих. Дата анонса первых потребительских накопителей на базе X-NAND пока неизвестна.

Источник

Чем отличается дорогой SSD M.2 от дешевого

Тип памяти qlc что это. Смотреть фото Тип памяти qlc что это. Смотреть картинку Тип памяти qlc что это. Картинка про Тип памяти qlc что это. Фото Тип памяти qlc что это

Тип памяти qlc что это. Смотреть фото Тип памяти qlc что это. Смотреть картинку Тип памяти qlc что это. Картинка про Тип памяти qlc что это. Фото Тип памяти qlc что это

Содержание

Содержание

Выбирая SSD-накопитель формата М.2 для персонального компьютера порой задаешься вопросом: «А нужно ли переплачивать за более дорогую модель или взять дешевую такого же объема?». В поиске ответа на этот вопрос мы рассмотрим потребительские SSD с интерфейсом подключения по PCI-E.

Данный интерфейс имеет несколько поколений (версий), которые отличаются между собой пропускной способностью.

Тип памяти qlc что это. Смотреть фото Тип памяти qlc что это. Смотреть картинку Тип памяти qlc что это. Картинка про Тип памяти qlc что это. Фото Тип памяти qlc что это

Интерфейс

Интерфейс PCI-E 3.0 x2

Его пропускная способность менее 2 Гб/с — это связано с тем, что одна линия третьего поколения PCI-E способна пропустить данные со скоростью до 1 Гб/с (985 Мб/с). Данный интерфейс уже не часто встретишь на рынке SSD-накопителей, в основном он используется в недорогих моделях.

Интерфейс PCI-E 3.0 x4

Он имеет 4 линии передачи данных. Максимальная скорость передачи составляет чуть меньше 4 Гб/с. В настоящее время это один из самых популярных интерфейсов у PCI-E SSD-накопителей.

Интерфейс PCI-E 4.0 x4

На сегодняшний день это один из самых быстрых интерфейсов для передачи данных. Одна линия четвертого поколения PCI-E способна передать данные с максимальной скоростью до 2 Гб/с, а 4 линии — до 8 Гб/с (7,88 Гб/с). Данный интерфейс используется на одних из самых дорогих SSD-накопителей.

Скорость передачи данных у SSD-накопителей может ограничиваться интерфейсом подключения на материнских платах. На материнских платах есть специальное гнездо для накопителей формата M.2, который использует PCI-E линии с процессора и управляются чипсетом материнской платы.

Тип памяти qlc что это. Смотреть фото Тип памяти qlc что это. Смотреть картинку Тип памяти qlc что это. Картинка про Тип памяти qlc что это. Фото Тип памяти qlc что это

Например, SSD-накопитель с логическим интерфейсом PCI-E 4.0 x4 и объемом на 500Гб на PCI-E 4.0 x4 показывает максимальную скорость чтения — 6900 Мбайт/сек, а записи — 5000 Мбайт/сек. На PCI-E 3.0 x4 его максимальная скорость чтения и записи будет приблизительно 3940 Мбайт/сек. Поэтому если вы не планируете в ближайшее время менять материнскую плату с большим числом линий, а также с более новыми поколениями совместимых интерфейсов, то брать SSD с более быстрым PCI-E нет смысла.

С помощью программы CrystalDiskInfo можно узнать текущей режим подключения в строке «Режим передачи».

Тип памяти qlc что это. Смотреть фото Тип памяти qlc что это. Смотреть картинку Тип памяти qlc что это. Картинка про Тип памяти qlc что это. Фото Тип памяти qlc что это

Контроллеры

Помимо PCI-E интерфейса SSD-накопители отличаются между собой контроллером — он обеспечивает обмен данными с шиной PCI-E, а так же управляет операциями по чтению и записи в ячейках памяти. От того насколько эффективно контроллер осуществляет эти команды и зависит быстродействие всего SSD-накопителя.

Тип памяти qlc что это. Смотреть фото Тип памяти qlc что это. Смотреть картинку Тип памяти qlc что это. Картинка про Тип памяти qlc что это. Фото Тип памяти qlc что это

В контроллере важно количество ядер и каналов. Чем больше ядер и каналов, тем лучше производительность и скорость SSD-накопителя при чтении и записи информации, следовательно, цена на данный накопитель будет выше, чем у более слабого контролера.

Модель контролера

PS5007-E7

PS5008-E8

PS50012-E12

Шина

PCIe Gen3x4

PCIe Gen3x2

PCIe Gen3x4

Поддерживаемая память

MLC/TLC

MLC/TLC

QLC/TLC

Кол-во ядер CPU

Потоков

Макс. скорость чтения, ГБ/с

Макс. скорость записи, ГБ/с

Чтобы узнать какой контролер именно в вашем SSD-накопителе достаточно заглянуть в описание характеристик, так же можно посмотреть на самом SSD-накопителе маркировку контролера.

Тип памяти qlc что это. Смотреть фото Тип памяти qlc что это. Смотреть картинку Тип памяти qlc что это. Картинка про Тип памяти qlc что это. Фото Тип памяти qlc что это

Фирм, выпускающих контролеры, довольно много. Но самые известные можно перечислить по пальцам: Silicon Motion, Phison, Realtek, Samsung.

Тип памяти

Немаловажным аспектом при выборе SSD-накопителя является тип памяти. На сегодняшний день существует четыре типа памяти:

Тип памяти qlc что это. Смотреть фото Тип памяти qlc что это. Смотреть картинку Тип памяти qlc что это. Картинка про Тип памяти qlc что это. Фото Тип памяти qlc что это

SLC «Single Level Cell» — на один блок помещается 1 бит информации. Данный тип памяти используется на дорогих SSD-накопителях и выдерживает около 100 тыс. перезаписей.

MLC «Multi Level Cell — на один блок помещается 2 бита информации. Данная память используется на высокоскоростных SSD-накопителях, которые выдерживают около 10 тыс. перезаписей, такие SSD существенно дешевле, чем память на SLC.

TLC «Triple Level Cell» — в нем на один блок записывается 3 бита информации. TLC память используется в подавляющем количестве накопителей. Его ресурс приблизительно 3–5 тыс. перезаписей.

QLC «Quad Level Cell» — новый тип памяти из четырех представленных. На один блок записывается 4 бита информации. Память QLC является самой дешевой на сегодняшний день и ее ресурс около 1 тыс. перезаписей.

Бренд

Если мы сравниваем именитые бренды, которые зарекомендовали себя на рынке, с неизвестными брендами с «поднебесной», то можно сказать многое. У именитого производителя SSD работают по передаче данных на заявленной скорости, имеют гарантию, их техническое описание соответствует реальности. Неизвестные бренды не всегда могут похвастаться этим: их скорость передачи данных может не соответствовать заявленной, а компонентная база SSD-накопителя собирается на неизвестных моделях.

Одним из самых популярных брендов SSD-накопителей является Samsung. Связано это с тем, что компания сама производит компонентную базу для своих накопителей, а так же обеспечивает максимальную скорость передачи данных и надежность на своих SSD-накопителях, но не стоит забывать и о других брендах. Например, Western Digital, его SSD- накопителем WD Black SN850 может с легкостью потягаться с Samsung 980 PRO по скорости передачи данных на чтении и записи, а другие производители SSD-накопителей могут не показывать столь выдающихся результатов, но при этом быть столь же надежными и стоить намного дешевле.

Источник

Ячейки памяти в SSD. Как работают, почему ломаются? SLC, MLC, TLC, QLC

Для данной статьи существует видоеверсия с большим количеством анимаций, рекомендую к просмотру именно её, вместо текстовой версии:

Принципы работы ячеек памяти, определение носителя информации, принципы считывания состояния ячейки памяти

Каждая ячейка памяти — это полевой транзистор с изолированным затвором, но не простой, а хитрый. Со сдвоенным затвором. Если кто не в курсе общая суть полевого транзистора заключается в следующем:

У нас есть исток и сток, проще говоря вход и выход, и между ними область через которую может проходить заряд от стока к истоку, и есть ещё одна отделённая область от этих структур диэлектриком, которая называется — затвор. И если подать заряд на затвор, то затвор своим электромагнитным полем начинает влиять на легированную часть транзистора между стоком и истоком и этим перекрывает возможность протекания тока между ними.

Тип памяти qlc что это. Смотреть фото Тип памяти qlc что это. Смотреть картинку Тип памяти qlc что это. Картинка про Тип памяти qlc что это. Фото Тип памяти qlc что это

Бывают конструкции наоборот, что если не подавать заряд на затвор, то ток от стока к истоку не идёт, а если подавать — то идёт. Но общая суть — это то, что затвор — это типа ручки у крана. Когда хочешь открываешь, когда хочешь закрываешь. Ну либо замок у ворот, собственно термин «затвор» как бы и намекает, что мы им можем затворять или отворять ток между стоком и истоком. Наиболее классический вариант для ячеек памяти — это когда без подачи питания на затвор — между стоком и истоком ток не идёт, а при питании плюсом на затвор — ток — идёт. Очень удобно в части управления, но как этим сохранять информацию — не понятно. И для того чтобы сохранять информацию была придумана модификация с двумя затворами. Первый, грубо говоря, внешний. Простой обыкновенный, а второй — внутренний, хитрый, называемый «плавающим». А хитрость его в том, что он со всех сторон окружён изолятором.

Тип памяти qlc что это. Смотреть фото Тип памяти qlc что это. Смотреть картинку Тип памяти qlc что это. Картинка про Тип памяти qlc что это. Фото Тип памяти qlc что это

То есть если поместить в него какой-то заряд, то этот заряд сам никуда не денется. И тут начинается самое интересное. Предположим, что заряда на плавающем затворе — нет. В таком случае — транзистор работает ровно так же, как и в случае когда второго затвора не было вообще. То есть не подаём заряд на затвор ток не идёт — подаём — ток идёт. Но если в плавающий затвор подать отрицательный заряд, то логика работы меняется. Если не подавать заряд на обычный затвор, то ток идти не будет, но если падать положительный заряд, то этот заряд будет компенсирован отрицательным зарядом плавающего затвора и в сумме они не дадут необходимого заряда чтобы ток через транзистор пошёл. То есть в случае активации транзистора ток через него всё равно не идёт. Иными словами — в случае подачи положительного заряда, если на плавающем ничего нет, то транзистор будет открыт, а если заряд есть — то транзистор будет закрыт. А теперь вспоминаем, что заряд в плавающем затворе никуда не девается, в том числе и в моменты когда питание на весь накопитель не подаётся вообще. То есть в любой момент времени мы можем по поведению тока сток исток понять есть ли заряд в нашем хитром затворе или нет. То есть прочитать заранее сохранённое состояние нашего транзистора, который стал уже вовсе и не транзистором, а ячейкой памяти.

Запись данных в ячейку памяти и причины ограниченности ресурса работы SSD

С запоминанием информации в целом понятно. С тем как понять что записано надеюсь тоже понятно. Остаётся понять только то, как осуществляется зарядка и разрядка плавающего изолированного затвора. То есть изменение состояния самой ячейки памяти. Иными словами — запись и стирание данных. И тут всё в общем-то не так сложно. Общая суть в том, что если приложить достаточное напряжение — то электроны могут пройти через диэлектрик, в нашем случае диоксид кремния.

Тип памяти qlc что это. Смотреть фото Тип памяти qlc что это. Смотреть картинку Тип памяти qlc что это. Картинка про Тип памяти qlc что это. Фото Тип памяти qlc что этоПри подаче высокого напряжения на Затвор и Сток электроны вынужденно проходят в область плавающего затвора

И имея вокруг нашего хитрого затвора достаточную разность потенциалов можно в него насильно впихнуть электроны, или наоборот высосать из него электроны, тем самым придав ему некий заряд, который сам по себе, без этих повышенных напряжений, никуда уже не денется долгие годы. Собственно таким образом и производится запись в ячейки памяти.

Тип памяти qlc что это. Смотреть фото Тип памяти qlc что это. Смотреть картинку Тип памяти qlc что это. Картинка про Тип памяти qlc что это. Фото Тип памяти qlc что этоПодача отрицательного заряда на затвор «выталкивает» электроны из плавающего затвора и они притягиваются на исток

Проблема только в том, что эти насильственные действия над транзистором на повышенном напряжении разрушают диоксид кремния вокруг затвора раз за разом при каждом прохождении через него заряда.

Тип памяти qlc что это. Смотреть фото Тип памяти qlc что это. Смотреть картинку Тип памяти qlc что это. Картинка про Тип памяти qlc что это. Фото Тип памяти qlc что это

Что ведёт к деградации свойств, и в конечном итоге к выходу ячейки памяти из строя. То есть при многократном воздействии на изолированный плавающий затвор для изменения его заряда — разрушается транзистор. То есть для транзистора существует предельное количество циклов изменения состояния этого затвора перед тем как ячейка памяти перестанет работать должным образом. Естественно разработчики накопителей в курсе проблемы, это всё учитывается в создаваемых контроллеров памяти, которые стремятся равномерно производить износ всего накопителя, вводятся резервные области для замены вышедших из строя ячеек, есть и другие софтовые оптимизации уже и на уровне операционных систем позволяющие максимально редко производить ненужные перезаписи.

Многобитные ячейки памяти. MLC, TLC, QLC. Принципы работы и отличия от однобитных. Причины падения скорости от увеличения битности.

С точки зрения работы транзистора наш дополнительный затвор позволяет сдвигать сток затворную характеристику. И кардинальное наличие заряда в плавающем затворе сдвигает эту характеристику так далеко, что рабочие напряжения для транзистора его не открывают.

Тип памяти qlc что это. Смотреть фото Тип памяти qlc что это. Смотреть картинку Тип памяти qlc что это. Картинка про Тип памяти qlc что это. Фото Тип памяти qlc что это Тип памяти qlc что это. Смотреть фото Тип памяти qlc что это. Смотреть картинку Тип памяти qlc что это. Картинка про Тип памяти qlc что это. Фото Тип памяти qlc что этоОтрицательные заряды сильно смещают напряжение Затвор-исток при котором начинает идти ток сток-исток

И в показанной схеме у нас есть некий широкий диапазон напряжений на затворе который нам позволяет понять что записано условно 0 или 1. То есть мы сохраняем 1 бит информации.

И описанный метод записи и чтения — полностью цифровой. То есть транзистор либо проводит ток, либо — нет, и это мы можем интерпретировать условно в то, что записан условно 0 или 1.

И так работает SLC память, SLC расшифровывается как «Single-Level Cells», то есть одноуровневая ячейка. Величины зарядов, напряжения и прочее параметры плавающего затвора — не имеют особого значения значения, как-то произведена перезарядка затвора, как-то проводит транзистор и в целом это всё надёжно и просто работает. Однако при разных градациях зарядов на плавающем затворе — напряжения на которых начинает открываться транзистор разные. И если фиксировать не только факт проводимости транзистора, а характеристику проводимости — то можно более точно и контролируемо заряжая плавающий затвор получить больше информации при записи в одну ячейку.

Тип памяти qlc что это. Смотреть фото Тип памяти qlc что это. Смотреть картинку Тип памяти qlc что это. Картинка про Тип памяти qlc что это. Фото Тип памяти qlc что этоНабор стоко-затворных характеристик для разного уровня заряда плавающего затвора

И это уже не цифровая запись, а аналоговая, то есть если мы зарядили чуть-чуть плавающий затвор, то и сместили мы характеристику чуть-чуть и у нас транзистор открывается если подать на затвор напряжение чуть выше чем минимально нужное, если зарядить плавающий затвор чуть сильнее, то и открыть транзистор будет ещё сложнее и т.д. В теории можно допустить бесконечное количество градаций уровней записей. Сейчас наверное некоторые из вас в шоке, но ячейки памяти в MLC, TLC и QLC SSD накопителях — это аналоговые носители информации, а не цифровые. Потому что именно таким образом и производиться запись многобитных ячеек памяти. Ячейка всё равно может сохранить только одно состояние записи, но если для однобитных ячеек записью было наличие или отсутствие заряда на плавающем затворе, то в многобитных ячейках под записью понимается не факт наличия или отсутствия заряда — а величина заряда. И уже эта величина при чтении должна быть оцифрована таким образом, чтобы это можно было записать в более чем один бит информации. И при оцифровывании любого аналогового сигнала емкость его данных в цифровом виде зависит от получаемой дискретности уровней распознавания сигнала. То есть чем больше градаций сигнала можно распознать, тем выше ёмкость данных аналогового сигнала. В текущий момент дискретизация сигнала производиться не очень сильная. Для двух битов данных нужно распознать 4 уровня величины сохранённого заряда,

Тип памяти qlc что это. Смотреть фото Тип памяти qlc что это. Смотреть картинку Тип памяти qlc что это. Картинка про Тип памяти qlc что это. Фото Тип памяти qlc что это

для трёх бит нужно распознать 8 уровней величины заряда,

Тип памяти qlc что это. Смотреть фото Тип памяти qlc что это. Смотреть картинку Тип памяти qlc что это. Картинка про Тип памяти qlc что это. Фото Тип памяти qlc что это

и для 4-х бит нужно распознавать до 16 уровней заряда.

Тип памяти qlc что это. Смотреть фото Тип памяти qlc что это. Смотреть картинку Тип памяти qlc что это. Картинка про Тип памяти qlc что это. Фото Тип памяти qlc что это

И распознование производиться по смещению характеристики открытия транзистора. Грубо говоря, если у нас разбит весь диапазон тестирования открытия транзистора на 16 диапазонов, то надо по очереди тестировать каждое напряжение на затвор и зная при каком из них у нас в достаточной степени открылся транзистор — такой уровень и считать записанным в этом транзисторе. И просто каждой градации этих напряжений даются порядковые номера которые и есть цифровая интерпретация уровня заряда плавающего затвора. И для 16 градаций или для QLC памяти — это 4 бита. Некоторые компании грозятся сейчас выпустить 5 битные ячейки.

Тип памяти qlc что это. Смотреть фото Тип памяти qlc что это. Смотреть картинку Тип памяти qlc что это. Картинка про Тип памяти qlc что это. Фото Тип памяти qlc что это

Как вы понимаете именно по технике разницы с 4-х битными не будет, но градаций будет уже не 16, а 32. То есть надо очень точно попадать в нужный диапазон заряда при наполнении плавающего затвора, и гораздо сложнее становится процесс считывания сигнала, вернее процесс оцифровки уровня заряда плавающего затвора. Естественно при этом снижается скорость работы с памятью. Кроме того — напомню, что процесс наполнения затвора зарядом — это аварийный для транзистора режим работы, и этот аварийный режим надо ещё очень точно контролировать, чтобы действительно был помещён нужный заряд, а не чуть больше или чуть меньше, потому что если заряд не попал в строгие рамки, то при его интерпритации он может дать другие цифровые значения. И, естественно, чем больше градаций — тем сложнее попасть в нужный диапазон. И в многобитных ячейках — неверная запись не является чем-то очень редким, поэтому для записи всегда требуется контроль на ошибки, что отнимает время, снижая скорость работы, вдобавок в случае ошибочной записи требуется перезапись ячеек в странице в которой была произведена ошибочная запись, что, как вы понимаете, ещё и снижает ресурс.

Причины снижения ресурса работы накопителей, запись накопителей с уплотнением данных.

Но не только этим снижается ресурс записи на многобитных ячейках. Как вы могли понять из теории — аппаратных различий для MLC, TLC или QLC памяти — нет. Меняется только процесс интерпретации записи, который задаётся программно. Иными словами если контроллер накопителя это позволяет, то QLC можно записывать в более простых для записи TLC, MLC или SLC режимах. Что сейчас активно и делается, хотя не на всех накопителях, но если пару лет назад было редкость — перезапись накопителей с уплотнением, то сейчас редкость когда такого не происходит. Работу уплотнения записи отлично было видно в тестах накопителей, когда при полной последовательной записи скорость падала в несколько градаций.

Тип памяти qlc что это. Смотреть фото Тип памяти qlc что это. Смотреть картинку Тип памяти qlc что это. Картинка про Тип памяти qlc что это. Фото Тип памяти qlc что этоПример «Ступенчатой» скорости записи, когда она падает градациями несколько раз

Разберёмся в том, что при этом происходило с накопителем.

Вначале накопитель занимал весь свой объём записывая всё в однобитном режиме. То есть абы какой заряд уже абы как смещает стоко-затворную характеристику, но этого достаточно чтобы записать один бит на ячейку. И в таком режиме весь объём ячеек быстро заканчивается. По данным о диске он ещё записан совсем чуть-чуть, но на самом деле он полностью забит данными. И для дальнейшего записывания накопитель начинает уплотнять запись. Но происходит это исключительно перезаписыванием. То есть надо во временное место скопировать данные страницы, далее затереть записанные данные, то есть вытащить из плавающих затворов заряды, дальше взять новый кусок информации, собрать его со старым куском информации и записать в те же ячейки, но уже не абы как, а, допустим, в MLC режиме, то есть с 4-мя градациями уровней заряда плавающих затворов. Далее накопитель так же заполняется полностью уже в режиме MLC. Если надо продолжить запись, а в MLC режиме место опять закончилось, то процесс уплотнения, то есть перезаписи в более плотном формате производиться уже в TLC режиме. Далее ещё может быть произведена запись в QLC режиме. Подобный механизм работает и в случае если вам хватило места до уплотнения. Как только вы перестаёте заполнять накопитель он автоматически начинает уплотнять запись, чтобы в случае необходимости он мог опять кратковременно вести запись в однобитном режиме используя свободный остаток. Хотя ещё раз напомню, что не все накопители так делают. В некоторых выделен фиксированный объём для быстрой записи и дальше накопитель заполняется уже с финальной плотностью.

Естественно такое огромное количество травмирующих ячейки перезаписей а также перезаписей из-за ошибок — крайне негативно сказывается на долговечности работы ячеек. Кроме того при большей плотности записи для изменения одного и того же объёма данных записанных случайным образом потребуется перезаписать больше страниц накопителя. Иными словами — ресурс накопителей от увеличения плотности резко падает и, в общем-то, причин на это аж несколько.

Надеюсь теперь полученные знания сделают для вас тесты накопителей увлекательнее.

Видео на YouTube канале «Этот компьютер»

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *