Тиристорный преобразователь что такое
Тиристорный преобразователь
Большинство электрических машин рассчитано на работу при стабильном значении напряжения и частоты питающей сети. Для управления параметрами двигателя (мощность на валу, частота вращения) необходимо изменение номиналов напряжения питания. В преобразователях напряжения и частоты используются транзисторы и тиристоры. Последние традиционно применяются для устройств высокой мощности, хотя появление достаточно мощных IGBT транзисторов позволяет постепенно избавляться от тиристорных схем из-за присущих им недостатков.
Принципы регулировки различаются для питающего напряжения постоянного тока или переменного.
Важно! В промышленности под аббревиатурой ТПЧ подразумеваются преобразователи для систем индукционного нагрева металлов. Для электроприводов используется термин – частотно-регулируемый привод или частотный преобразователь для электропривода.
Виды преобразовательных агрегатов
Преобразование может выполняться различными схемами, в которых отличается принцип работы. Различают несколько типичных вариантов использования тиристоров:
Управляемый выпрямитель характеризуется тем, что вместо части или всех диодов установлены тиристоры, коммутируя которые в определенные моменты времени можно управлять величиной среднего напряжения на нагрузке.
Преобразователь напряжения на тиристорах, включенный по схеме управляемого выпрямителя, в силу особенностей работы, можно использовать только в цепях переменного тока для питания нагрузки постоянным напряжением.
Инверторные преобразователи формируют напряжение, по форме близкое к синусоидальному, из постоянного. При этом может быть получено различное количество фаз, имеется возможность регулировки амплитуды и частоты напряжения.
Асинхронный двигатель для осуществления возможности управления мощностью и частотой вращения может включаться только через инверторный преобразователь (частотник).
Схема 3-фазного частотника
Тиристорные трехфазные преобразователи частоты используются для управления мощной нагрузкой и находят применение там, где нет возможности включения оборудования на IGBT транзисторах.
Различают два класса устройств по принципу коммутации управляющих элементов:
Одноступенчатые устройства отличаются простой схемотехникой, но не обладают возможностью регулировки выходного напряжения, поскольку управление производится всеми тиристорами одновременно. Регулирование напряжения идет путем установки в цепи постоянного питающего напряжения через установку регулируемого выпрямителя.
В свою очередь, двухступенчатые преобразователи делятся на схемы:
Данные устройства сложнее не только схемой управления, но и силовой частью, поскольку в них присутствует две группы тиристоров: анодные и катодные.
Групповая коммутация
Управляющие сигналы поступают раздельно на анодную или катодную группу.
Пофазная коммутация
Управление осуществляется раздельно по каждой фазе преобразования путем отключения анодного или катодного тиристора.
Индивидуальная коммутация
Здесь управление производится каждым тиристором преобразователя раздельно. За счет индивидуального управления можно реализовывать большое число алгоритмов преобразования, снижать до минимума искажения формы сигнала и уровень электромагнитных помех.
Особенности тиристорного управления
Тиристоры в качестве коммутирующих элементов характеризуются тем, что могут использоваться исключительно в качестве ключей. Каталог номенклатуры тиристоров отличается тем, что большинство элементов в нем не требует постоянной подачи управляющего сигнала. Здесь используется свойство тиристоров сохранять открытое состояние после снятия управления. Запирание происходит только тогда, когда ток через элемент снижается ниже определенного уровня, или происходит смена полярности напряжения на аноде и катоде.
Не дожидаться смены полярности или уменьшения тока можно, применяя специальные запираемые тиристоры, которые запираются путем подачи сигнала на управляющий электрод.
Любой тиристорный преобразователь отличается высоким уровнем искажения формы напряжения. Также в момент переключения возникают импульсы электромагнитных помех, для уменьшения уровня которых требуется использование дополнительных схемных решений (коммутация в момент перехода напряжения через нуль, установка помехоподавляющих фильтров).
Схемные решения преобразователей на основе тиристоров
Особенностью схем на тиристорах является то, что они рассчитаны на работу с определенным характером нагрузки.
Последовательный и параллельный инверторы тока
Данный тип преобразователей имеет дополнительный конденсатор, включенный последовательно или параллельно нагрузке. Назначение конденсатора – обеспечение надежного запирания тиристоров, не участвующих в прохождении тока по силовой цепи. Для стабилизации тока через нагрузку вход инвертора тока содержит индуктивность, которая в идеальном случае должна стремиться к бесконечности.
Комбинированные схемы
Комбинированная последовательно-параллельная схема содержит два конденсатора и позволяет улучшить нагрузочные характеристики устройства. В частности, такая схема отличается большей устойчивостью при работе с малой нагрузкой.
Данное решение позволяет питать индуктивную нагрузку, например, устройства, в которых производится индукционный нагрев или сварка металлических конструкций.
Последовательный резонансный инвертор
В подобной схеме емкость конденсатора и индуктивность подобраны таким образом, чтобы на частоте преобразования LC контур находился в резонансе. Таким образом, управление тиристорами будет происходить на резонансной частоте.
Преобразование может вестись на более высокой частоте, что улучшает характеристики схемы из-за лучших условий переключения ключевых элементов.
Схема модели индукционного комплекса на тиристорах
Поскольку для питания объектов промышленных предприятий используется трехфазный переменный ток, конструкция обязательно содержит выпрямитель, который на выходе образует постоянный ток.
Использование тиристоров в качестве ключевых элементов инвертора позволяет создавать простые и надежные схемы, основной недостаток которых заключается в достаточно сильных искажениях формы напряжения и высоком уровне электромагнитных помех.
Видео
Тиристорный преобразователь постоянного тока
Для выравнивания переменного тока в постоянный требуется использование специальных устройств. Тиристорный преобразователь частоты для индукционного нагрева применяется в различных областях промышленности для регулирования напряжения и прочих параметров электрической энергии.
Принцип работы и конструкция
Для преобразования нагрузки может использоваться тиристорный или транзисторный высоковольтный преобразователь на базе IGBT. Тиристорный частотный преобразователь (ТП, ТПР или ТПЧ) – это электрическое устройство для преобразования переменного тока в постоянный, регулирования его уровня и прочих характеристик. С его помощью можно уравнивать различные параметры электрических редукторов: скорость вращения в момент пуска, угол и прочие.
Фото — тиристорный уравнитель
Тиристорный преобразователь применяется для двигателя постоянного тока (ДПТ) вместе с системой автоматического регулирования (FR A700 в Mitsubishi Electric, Siemens Simoreg DC Master, Omron Yaskawa). Он имеет очень широкую область применения благодаря своим достоинствам:
Но у такой системы есть определенные недостатки. В первую очередь – это низкий коэффициент мощности, который проявляется при глубоком регулировании производственных процессов. Компенсировать его можно при помощи дополнительных устройств. Кроме этого, мощный преобразователь вызывает помехи в электрической сети, что сказывается на работе чувствительного электро- и радиооборудования.
Большинство современных преобразователей подключаются к трансформатору через реактор. Трансформатор в этой схеме является согласующим звеном между входящим и выходным напряжением, он уравновешивает разницу между ними. Помимо него, электросхема также включает в себя специальный сглаживающий реактор. Этот прибор необходим для нейтрализации определенных пульсаций, возникающих при выпрямлении и изменении типа тока. Но система не всегда включает в себя реактор, т. к. при достаточной индуктивности асинхронного двигателя в нем нет необходимости.
Агрегат пропускает через автономный инвертор (расположенный во входящем звене) первичную нагрузку. Они попадают в выпрямляющие блоки, установленные в выходном звене. Для подключения других индукционных потребителей используются специальные шины, которые помогают выравнивать питание в целой группе устройств.
Такой преобразователь бывает низкочастотный и высокочастотный. В зависимости от потребных частот и имеющихся параметров электричества подбирается нужная модель. Нужно отметить, что в станках, где используется трехфазный ток, применяется другой тип подключения. Однофазный переносит воздействия и преобразования, в то время как на преобразовании трехфазного тока теряется КПД.
Фото — преобразовательный пункт
Система используется в плавке металлов, сварочных работах, контроле кранового механизма и многих других производственных и технологических процессах. Применение такого принципа работы позволяет реализовать систему генератор-двигатель без использования генератора. Благодаря этому производится широкая регулировка частот вращения шпинделя даже на самых малых скоростях, настраиваются механические и другие характеристики электропривода и прочие параметры.
Разработка
Электрическая схема тиристорный преобразователь-двигатель (к примеру, КТЭ) для плавного переключения может быть двух видов:
В зависимости от типа исполнения варьируются соотношения расчетных единиц и принципы работы преобразователя.
Фото — нулевая схема трехфазного преобразования
На этом чертеже схематически показано изменение электрической энергии при работе тиристорного преобразователя в режиме выпрямителя и инвертора. В то же время, для мостовой схемы можно сделать такую же диаграмму, но только состоящую из двух нулевых. Именно она наиболее часто используется при проектировании преобразователя для станочного оборудования. Это происходит из-за того, что исходное фазовое напряжение в ней в два раза превышает фазовой напряжение (Udo) в нулевой схеме работы.
Фото — питание
Однофазная схема используется для контроля питания и работы привода машин с высоким индуктивным сопротивлением. Она работает в пределах мощности от 10 кВт до 20, намного реже – при больших мощностях. К примеру, подойдет для электрической печи, домашнего станка.
Фото — однолинейная схема
Трехфазная используется для оборудования, где требуется от 20 кВт для работы. К примеру, для синхронных приводов, двигателя крана и экскаватора. Еще одной популярной многофазной схемой контроля является шестифазная (Кемрон). Её проект предусматривает использование в конструкции уравнительного реактора, который направлен на контроль низкого напряжения и высокого тока. Этот силовой электрический прибор пропускает и преобразовывает электрическую энергию параллельным путем, а не последовательным (как большая часть аналогичных устройств). Его более сложно разработать своими руками, но степень надежности и эффективности значительно больше, нежели у однофазного тиристорного преобразователя. Но такой реверсивный контроллер имеет серьезный недостаток – его КПД менее 70 %.
Своими руками можно сделать собственный преобразователь, но многое зависит от используемой базы. Внизу дана схема, разработанная на основе Micro-Cap 9. Главной особенностью этой модели является необходимость в совместном моделировании различных узлов.
Фото — Схема тиристорного уравнителя
Видео: как работают тиристорные преобразователи
Техническое описание и обзор цен
Характеристики тиристорных преобразователей зависят от типа их исполнения и функциональных особенностей.
Параметры | ТПЧ 320 | 800 |
Выходная мощность, кВт | 320 | 800 |
Максимальная полная мощность, кВ-А | 640 | 1250 |
Частота, Гц | 50 | 50 |
Входящее напряжение, В | 380 | 500 |
Максимальный ток, А | 630 | 1000 |
КПД, % | 94 | 94 |
Выходное напряжение, В | 800 | 1000 |
Номинальный ток, А | 400 |
Максимальный ток, А | 800 |
Входящее напряжение, В | 460 |
Габаритные размеры, мм | 800x775x1637 |
ЭПУ-1-1-3447Е УХЛ4 (производитель заявляет, что этот преобразователь может работать в сложных условиях, повышенной пыльности и влажности):
Номинальный ток, А | 25 |
Максимальный ток, А | 100 |
Входящее напряжение, В | 380 |
Но тиристорные преобразователи продаются не только по одной единице, но и в виде выпрямляющих комплексов (КТЭУ). Если единичный уравнитель при поломке нуждается в полном ремонте или демонтаже, то у комплекса производится замена вышедшего из строя оборудования. Такие системы используются как в приводах станков, так и в ЭКТ (комплектных тиристорных электроприводах).
Рассмотрим, какова цена тиристорного преобразователя ABB DCS400:
Город | Цена, у. е. |
Москва | 100 |
Санкт-Петербург | 100 |
Челябинск | 95 |
Воронеж | 98 |
Самара | 95 |
Новосибирск | 95 |
Ростов-на-Дону | 98 |
Купить устройство можно в любом магазине электрических товаров, прайс-лист зависит от характеристик и типа исполнения.
Тиристорные преобразователи — полное описание функций и область применения
Главное предназначение тиристорного преобразователя организовать управляемое питание электродвигателя от сети однофазного трехфазного переменного тока.
Установка полупроводниковых элементов осуществляется на одной фазе или на трехфазном мосте.
Существует несколько вариантов комплектования моста – это: комбинация триодов или диодов, или исключительно из тиристоров. При создании моста только из тиристоров достигается получение преобразовательного устройства небольших компактных размеров.
Рис.№1. Мостовая схема постоянного тока для электродвигателя постоянного тока.
Тип тиристорных регуляторов приспособлен к осуществлению различных решений для совместного применения с двигателями постоянного тока, имеющими независимое возбуждение, кроме электродвигателей с постоянными магнитами, для которых не нужна отдельная цепь для возбуждения. В сочетании с реверсом электродвигателей они входят в группу устройств управления электродвигателями. Для двигателей постоянного тока использование тиристорных преобразователей сопряжено с рядом некоторых трудностей – это постоянное техническое обслуживание, заключаемое в периодической замене графитовых щеток и достижение высоких скоростей работы.
Использование преобразователей для двигателей, работающих от сети переменного тока, в частности, асинхронные двигатели представляется более надежным и рентабельным вариантом, чем использование двигателей постоянного тока.
Асинхронный двигатель обладает лучшей защитой от внешних воздействий и неблагоприятных погодных условий, преобладающее большинство двигателей обладает высокой степенью защиты IP55.
Система управления тиристорным преобразователем
Для осуществления точностных и динамических характеристик, свойственных для оборудования, необходимо решение, которое позволит реализовать операции по управлению тиристорным преобразователем в полной мере. Это двухуровневая система управления.
Первый уровень – это программно-аппаратный способ. Он подразумевает использование специализируемого контроллера, второй относится к информационным уровням.
Тиристорный преобразователь для плавного пуска высоковольтных асинхронных двигателей
ТПН (тиристорный преобразователь напряжения) успешно применяется для низковольтных до 1000 кВ двигателей и для высоковольтных электрических машин с напряжением от 3,6 до 10 кВ. Широкое распространение таких машин является следствием их энергоемкости. Их мощность соразмерна с мощностью некоторых трансформаторных подстанций, поэтому устройства плавного пуска с использованием тиристоров весьма важное решение.
Рис. №2. Функциональная схема ПАД-В
Создание тиристорных преобразователей реализуется на базе концепции, главные аспекты которой – это:
Рис. №3. Высоковольтный тиристорный модуль ВТМ.
Модуль состоит из двух встречно-параллельных тиристоров, оборудованных охладителями, выравнивающими резистором R2, оптоуправляемыми моделями, формирователями тиристорных импульсов (ФИ). Дополнят конструкцию: датчики напряжения, температуры и синхронизации с оптическим выходом.
Основные схемы тиристорных преобразователей
Главные схемы преобразователей на тиристорах – это: встречно-параллельная и перекрестная схема. Первая схема питается от общей обмотки трансформатора, перекрестная схема подразумевает питание каждой группы тиристоров от отдельной обмотки трансформатора. Существует раздельное управление, управляющие импульсы приходят только на работающую группу тиристоров, тиристоры с противоположной полярностью оказываются запертыми. Одновременная работа вентильных групп недопустима.
Для предотвращения неисправностей и аварийных ситуаций запрещено:
Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.
Тиристорные преобразователи постоянного тока
Тиристорным преобразователем постоянного тока (ТП) является устройство для преобразования переменного тока в постоянный с регулированием по заданному закону выходных параметров (тока и напряжения). Тиристорные преобразователи предназначаются для питания якорных цепей двигателей и их обмоток возбуждения.
Тиристорные преобразователи состоят из следующих основных узлов:
• трансформатора или токоограничивающего реактора на стороне переменного тока,
• элементов системы управления, защиты и сигнализации.
Трансформатор осуществляет согласование входного и выходного напряжений преобразователя и (так же, как и токоограничивающий реактор) ограничение тока короткого, замыкания во входных цепях. Сглаживающие реакторы предназначаются для сглаживания пульсаций выпрямленных напряжения и тока. Реакторы не предусматриваются, если индуктивность нагрузки достаточна для ограничения пульсаций в заданных пределах.
Применение тиристорных преобразователей постоянного тока позволяет реализовать практически те же характеристики электропривода, что и при использовании вращающихся преобразователей в системах генератор-двигатель (Г — Д), т. е. регулировать в широких пределах частоту вращения и момент двигателя, получать специальные механические характеристики и нужный характер протекания переходных процессов при пуске, торможении, реверсе и т. д.
Однако, по сравнению с вращающимися статические преобразователи имеют целый ряд известных преимуществ, поэтому в новых разработках крановых электроприводов предпочтение отдается статическим преобразователям. Тиристорные преобразователи постоянного тока наиболее перспективны для применения в электроприводах крановых механизмов мощностью свыше 50—100 кВт и механизмов, где требуется получение специальных характеристик привода в статических и динамических режимах.
Схемы выпрямления, принципы построения силовых цепей преобразователей
Рис. 1. Трехфазная нулевая схема (а) и диаграммы изменения тока и напряжения в выпрямительном (б, в) и инверторном (г, д) режимах.
Показанный на диаграммах угол γ (угол коммутации), характеризует период времени, в течение которого ток протекает одновременно по двум тиристорам. Зависимость среднего значения выпрямленного напряжения Ua от угла регулирования α называется регулировочной характеристикой.
Для нулевых схем среднее выпрямленное напряжение определяется из выражения
где m — число фаз вторичной обмотки трансформатора; U2 ф – действующее значение фазового напряжения вторичной обмотки трансформатора.
Для мостовых схем Udo в 2 раза выше, так как эти схемы эквивалентны последовательному включению двух нулевых схем.
Однофазные схемы выпрямления используются, как правило, в цепях с относительно большими индуктивными сопротивлениями. Это цепи независимых обмоток возбуждения двигателей, а также якорные цепи двигателей небольшой мощности (до 10—15 кВт). Многофазные схемы используются в основном для литания якорных цепей двигателей мощностью свыше 15— 20 кВт и реже для питания обмоток возбуждения. По сравнению с однофазными многофазные схемы выпрямления имеют целый’ ряд преимуществ. Основными из них являются: меньшие пульсации выпрямленного напряжения и тока, лучшее использование трансформатора и тиристоров, симметричная нагрузка фаз питающей сети.
В тиристорных преобразователях постоянного тока, предназначенных для крановых приводов мощностью свыше 20 кВт, наиболее оправдано применение трехфазной мостовой схемы. Это обусловлено хорошим использованием трансформатора и тиристоров, низким уровнем пульсаций выпрямленного напряжения и тока, а также простотой схемы и конструкции трансформатора. Известным достоинством трехфазной мостовой схемы является и то, что она может быть выполнена не с трансформаторной связью, а с токоограничивающим реактором, габариты которого существенно меньше габаритов трансформатора.
В трехфазной нулевой схеме условия использования трансформатора при обычно применяемых группах соединения Y/Y и Δ/Y хуже из-за наличия постоянной составляющей потока. Это приводит к увеличению сечения магнитопровода и, следовательно, расчетной мощности трансформатора. Для исключения постоянной составляющей потока применяют соединение вторичных обмоток трансформатора в «зигзаг», что также несколько увеличивает расчетную мощность. Увеличенный уровень, пульсаций выпрямленного напряжения вместе с отмеченным выше недостатком ограничивает использование трехфазной нулевой схемы.
Шестифазная схема с уравнительным реактором целесообразна при использовании ее на низкое напряжение и большой ток, так как в этой схеме нагрузочный ток протекает параллельно, а не последовательно через два диода, как в трехфазной мостовой схеме. Недостатком этой схемы является наличие уравнительного реактора, имеющего типовую мощность около 70% выпрямленной номинальной мощности. Кроме того, в шестифазных схемах используется довольно сложная конструкция трансформатора.
Схемы выпрямления на тиристорах обеспечивают работу в двух режимах — выпрямительном и инверторном. При работе в инверторном режиме энергия из цепи нагрузки передается в питающую сеть, т. е. в противоположном направлении по сравнению с выпрямительным режимом, поэтому при инвертировании ток и э. д. с. обмотки трансформатора направлены встречно, а при выпрямлении — согласно. Источником тока в режиме инвертирования является э. д. с. нагрузки (машины постоянного тока, индуктивности), которая должна превышать напряжение инвертора.
Перевод тиристорного преобразователя из выпрямительного режима в инверторный достигается изменением полярности э. д. с. нагрузки и увеличением угла α выше π/2 при индуктивной нагрузке.
Рис. 2. Встречно-параллельная схема включения вентильных групп. УР1— УР4 — уравнительные реакторы; РТ — токоограничивающий реактор; CP — сглаживающий реактор.
Рис. 3. Схема нереверсивного ТП для цепей обмоток возбуждения двигателей. Для обеспечения режима инвертирования необходимо, чтобы закрывающийся очередной тиристор успел восстановить свои запирающие свойства, пока на нем имеется отрицательное напряжение, т. е. в пределах угла φ (рис. 1, в).
Если это не произойдет, то закрывающийся тиристор может снова открыться, так как к нему прикладывается прямое напряжение. Это приведет к опрокидыванию инвертора, при котором возникнет аварийный ток, поскольку э. д. с. машины постоянного тока и трансформатора совпадут по направлению. Для исключения опрокидывания необходимо, чтобы выполнялось условие
Силовые схемы тирсторных преобразователей, предназначенных для питания якорных цепей двигателей, выполняются как в нереверсивном (одна выпрямительная группа тиристоров), так и в реверсивном (две выпрямительные группы) исполнениях. Нереверсивные исполнения тиристорных преобразователей, обеспечивающих одностороннюю проводимость, позволяют работать в двигательном и генераторном режимах только при одном направлении момента двигателя.
Для изменения направления момента требуется или изменить направление тока якоря при неизменном направлении потока возбуждения, или изменить направление потока возбуждения при сохранении направления тока якоря.
Реверсивные тиристорные преобразователи имеют несколько разновидностей схем силовой цепи. Наибольшее распространение получила схема с встречно-параллельным подключением к одной вторичной обмотке трансформатора двух вентильных групп (рис. 2). Такая схема может быть выполнена и без индивидуального трансформатора с питанием тиристорных групп от общей сети переменного тока через анодные токоограничивающие реакторы РТ. Переход на реакторный вариант значительно сокращает размеры тиристорного преобразователя и снижает его стоимость.
Тиристорные преобразователи для цепей обмоток возбуждения двигателей выполняются в основном в нереверсивном исполнении. На рис. 3, а показана одна из применяемых схем включения выпрямительных элементов. Схема позволяет в широких пределах изменять ток возбуждения двигателя. Минимальное значение тока имеет место, когда тиристоры Т1 и Т2 закрыты, а максимальное, когда они открыты. На рис. 3, б, г показан характер изменения выпрямленного напряжения для этих двух состояний тиристоров, а на рис. 3, в для состояния, когда
Способы управления реверсивными тиристорными преобразователями
В реверсивных тиристорных преобразователях применяются два основных способа управления вентильными группами — совместный и раздельный. В свою очередь совместное управление выполняется согласованным и несогласованным.
При согласованном управлении отпирающие импульсы на тиристоры подаются на обе группы вентилей таким образом, чтобы средние значения выпрямленного напряжения у обеих групп были равны между собой. Это обеспечивается при условии
где a в и a и — углы регулирования выпрямительной и инверторной групп. При несогласованном управлении среднее значение напряжения инверторной группы превышает напряжение выпрямительной группы. Это достигается при условии, если
Мгновенное значение напряжений групп при совместном управлении не равны друг другу во все моменты времени, вследствие чего в замкнутом контуре (или контурах), образуемых тиристорными группами и обмотками трансформатора, течет уравнительный ток, для ограничения которого в цепь тиристорного преобразователя включаются уравнительные реакторы УР1—УР4 (см. рис. 1).
Реакторы включают в контур уравнительного тока по одному или по два на группу, причем, их индуктивность выбирается такой, чтобы уравнительный ток не превышал 10% номинального тока нагрузки. При включении токоограничивающих реакторов по два на группу они выполняются насыщающимися при протекании тока нагрузки. Например, при работе группы В насыщаются реакторы УР1 и УР2, а реакторы УРЗ и УР4 остаются ненасыщенными и ограничивают уравнительный ток. Если реакторы включаются по одному на группу (УР1 и УРЗ), то они выполняются не насыщающимися при протекании тока нагрузки.
Преобразователи с несогласованным управлением имеют меньшие габариты реакторов, чем при согласованном управлении. Однако при несогласованном управлении снижается диапазон допустимых углов регулирования, что приводит к худшему использованию трансформатора и уменьшению коэффициента мощности установки. Одновременно нарушается линейность регулировочных и скоростных характеристик электропривода. Для полного исключения уравнительных токов используется раздельное управление вентильными группами.
Раздельное управление заключается в том, что управляющие импульсы подаются только на ту группу, которая в данный момент должна работать. На вентили неработающей группы управляющие импульсы не подаются. Для изменения режима работы тиристорного преобразователя используется специальное переключающее устройство, которое при равенстве нулю тока тиристорного преобразователя сначала снимает управляющие импульсы с ранее работающей группы, а затем после небольшой паузы (5—10 мс) подает управляющие импульсы на другую группу.
При раздельном управлении нет необходимости включения уравнительных реакторов в цепи отдельных групп вентилей, возможно полное использование трансформатора, снижается вероятность опрокидывания инвертора вследствие уменьшения времени работы тиристорного преобразователя в инверторном режиме, уменьшаются потери энергии и соответственно увеличивается к. п. д. электропривода из-за отсутствия уравнительных токов. Однако раздельное управление предъявляет высокие требования к надежности устройств для блокирования управляющих импульсов.
Сбой в работе блокирующих устройств и появление управляющих импульсов на нерабочей группе тиристоров приводят к внутреннему короткому замыканию в тиристорном преобразователе, так как уравнительный ток между группами в этом случае ограничен только реактансом обмоток трансформатора и достигает недопустимо большого значения.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети: