Третий закон менделя утверждает что
Законы Менделя кратко и понятно
В этой статье кратко и понятно описываются три закона Менделя. Эти законы — основа всей генетики, создав их, Мендель фактически создал эту науку.
Здесь Вы найдёте определение каждого закона и узнаете немного нового о генетике и биологии в целом.
Перед началом чтения статьи стоит понимать, что генотип — это совокупность генов организма, а фенотип — его внешних признаков.
Кто такой Мендель и чем он занимался
Грегор Иоганн Мендель — известный австрийский биолог, родившийся в 1822 году в деревне Гинчице. Хорошо учился, но у семьи его были материальные трудности. Чтобы разобраться с ними, Иоганн Мендель в 1943 году решил стать монахом чешского монастыря в городе Брно и получил там имя Грегор.
Грегор Иоганн Мендель (1822 1884)
Позже изучал биологию в Венском университете, а затем решил преподавать физику и природоведение в Брно. Тогда же учёный заинтересовался ботаникой. Он проводил опыты по скрещиванию гороха. На основе результатов этих опытов учёный вывел три закона наследственности, которым и посвящена эта статья.
Опубликованные в работе «Опыты с гибридами растений» в 1866 году, эти законы не получили широкой огласки, и вскоре работа была забыта. О ней вспомнили лишь после смерти Менделя в 1884 году. Вам уже известно, сколько законов он вывел. Теперь пора перейти к рассмотрению каждого.
Первый закон Менделя — закон единообразия гибридов первого поколения
Рассмотрим опыт, проведённый Менделем. Он взял два вида гороха. Эти виды различали цветом цветков. У одного они были пурпурные, а у другого — белые.
Скрестив их, учёный увидел, что у всего потомства цветки пурпурные. А горох жёлтого и зелёного цвета дал полностью жёлтое потомство. Биолог повторял эксперимент ещё много раз, проверяя наследование разных признаков, однако результат всегда был один.
На основе этих опытов учёный вывел свой первый закон, вот его формулировка: все гибриды в первом поколении всегда наследуют лишь один признак от родителей.
Обозначим ген, отвечающий за пурпурные цветки, как A, а за белые— a. Генотип одного родителя — AA (пурпурные), а второго — aa (белые). От первого родителя будет унаследован ген A, а от второго — a. Значит, генотип потомства всегда будет Aa. Ген, обозначенный заглавной буквой, называется доминантным, а строчной — рецессивным.
Если в генотипе организма содержатся два доминантных или два рецессивных гена, то его называют гомозиготным, а организм, содержащий разные гены — гетерозиготным. Если организм гетерозиготен, то рецессивный ген, обозначаемый прописной буквой, подавляется более сильным доминантным, в результате проявляется признак, за который отвечает доминантный. Значит, горох с генотипом Aa будет обладать пурпурными цветками.
Скрещивание двух гетерозиготных организмов с разными признаками — это моногибридное скрещивание.
Кодоминирование и неполное доминирование
Бывает такое, что доминантный ген не может подавить рецессивный. И тогда в организме проявляются оба родительских признака.
Такое явление можно наблюдать на примере камелии. Если в генотипе этого растения один ген отвечает за красные лепестки, а другой — за белые, то половина лепестков камелии станут красными, а остальные — белыми.
Такое явление называют кодоминированием.
Неполное доминирование — похожее явление, при котором появляется третий признак, нечто среднее между тем, что было у родителей. Например, цветок ночная красавица с генотипом, содержащим и белые, и красные лепестки, окрашивается в розовый.
Второй закон Менделя — закон расщепления
Итак, мы помним, что при скрещивании двух гомозиготных организмов всё потомство примет лишь один признак. Но что, если взять из этого потомства два гетерозиготных организма и скрестить их? Будет ли потомство единообразным?
Вернёмся к гороху. Каждый родитель с равной вероятностью передаст либо ген A, либо ген a. Тогда потомство разделится следующим образом:
Видно, что организмов с пурпурными цветками в три раза больше. Это явление расщепления. В этом и заключается второй закон Грегора Менделя: при скрещивании гетерозиготных организмов потомство расщепляется в соотношении 3:1 по фенотипу и 1:2:1 по генотипу.
Впрочем, существуют так называемые летальные гены. При их наличии происходит отклонение от второго закона. Например, потомство жёлтых мышей расщепляется в соотношении 2:1.
То же происходит и с лисицами платинового цвета. Дело в том, что если в генотипе этих (и некоторых других) организмов оба гена доминантные, то они просто погибают. В результате доминантный ген может проявляться только если организм гетерозиотен.
Закон чистоты гамет и его цитологическое обоснование
Возьмём жёлтый горох и зелёный горох, ген жёлтого цвета — доминантный, а зелёного — рецессивный. В гибриде будут содержаться оба этих гена (хотя мы увидим лишь проявление доминантного).
Известно, что от родителя к потомству гены переносятся с помощью гамет. Гамета — это половая клетка. В генотипе гибрида имеется два гена, выходит, в каждой гамете — а их две — находилось по одному гену. Слившись, они образовали генотип гибрида.
Если во втором поколении проявился рецессивный признак, характерный одному из родительских организмов, значит, выполнялись следующие условия:
Второй пункт — закон чистоты гамет. Конечно, гена не два, их больше. Существует понятие аллельных генов. Они отвечают за один и тот же признак. Зная это понятие, можно сформулировать закон так: в гамету проникает по одному, случайно выбранному, гену из аллели.
Цитологическая основа данного правила: клетки, в которых находятся содержащие пары аллелей хромосомы со всей генетической информацией, делятся и образуют клетки, в которых есть лишь по одной аллели — гаплоидные клетки. В данном случае это гаметы.
Третий закон Менделя — закон независимого наследования
Выполнение третьего закона возможно при дигибридном скрещивании, когда исследуется не один признак, а несколько. В случае с горохом это, например, цвет и гладкость семян.
Гены, отвечающие за цвет семян, обозначим как A (жёлтый) и a (зелёный), за гладкость — B (гладкие) и b (морщинистые). Попробуем провести дигибридное скрещивание организмов с разными признаками.
Первый закон не нарушается при таком скрещивании, то есть гибриды будут одинаковы и по генотипу (AaBb), и по фенотипу (с жёлтыми гладкими семенами).
Каким же будет расщепление во втором поколении? Чтобы это узнать, необходимо выяснить, какие гаметы могут выделить родительские организмы. Очевидно, это AB, Ab, aB и ab. После этого строится схема, называемая решёткой Пиннета.
По горизонтали перечисляются все гаметы, которые может выделить один организм, а по вертикали — другой. Внутри решётки записывается генотип организма, который появился бы при данных гаметах.
AB | Ab | aB | ab | |
AB | AABB | AABb | AaBB | AaBb |
Ab | AABb | AAbb | AaBb | Aabb |
aB | AaBB | AaBb | aaBB | aaBb |
ab | AaBb | Aabb | aaBb | aabb |
Если изучить таблицу, можно прийти к выводу, что расщепление гибридов второго поколения по фенотипу происходит в соотношении 9:3:3:1. Это понял и Мендель, проведя несколько экспериментов.
Помимо этого он также пришёл к выводу, что то, какой из генов одной аллели (Aa) попадёт в гамету, не зависит от другой аллели (Bb), то есть существует только независимое наследование признаков. Это и есть его третий закон, называемый законом независимого наследования.
Заключение
Три закона Менделя — основные генетические законы. Благодаря тому, что один человек решил поэкспериментировать с горохом, биология получила новый раздел — генетику.
С её помощью учёные со всего мира научились множеству вещей, начиная предотвращением болезней, заканчивая генной инженерией. Генетика — это один из самых интересных и перспективных разделов биологии.
Третий закон Менделя
Третий закон Менделя — это закон независимого распределения признаков. Под этим подразумевается, что каждый ген одной аллельной пары может оказаться в гамете с любым другим геном из другой аллельной пары.
Третий закон Менделя проявляется уже при дигибридном скрещивании (тем более при тригибридном и полигибридном), когда чистые линии различаются по двум исследуемым признакам. Мендель скрестил сорт гороха с желтыми гладкими семена с сортом, у которого были зеленые морщинистые семена, и получил исключительно желтые гладкие семена F1.
Далее он вырастил из семян растения F1, позволил им самоопыляться и получил семена F2. И здесь он наблюдал расщепление: появились растения как с зелеными, так и морщинистыми семенами. Самое удивительное было то, что среди гибридов второго поколения оказались не только растения с желтыми гладкими и зелеными морщинистыми семенами. Также были желтые морщинистые и зеленые гладкие семена, т. е. произошла рекомбинация признаков, и получились такие комбинации, которые не встречались у исходных родительских форм.
Анализируя количественное соотношение разных семян F2, Мендель обнаружил следующее:
Если рассматривать каждый признак по отдельности, то он расщеплялся в отношении 3:1, как при моногибридном скрещивании. То есть на каждые три желтых семени приходилось одно зеленое, а на каждые 3 гладких — 1 морщинистое.
Появились растения с новыми комбинациями признаков.
Соотношение фенотипов было 9 : 3 : 3 : 1, где на девять желтых гладких семян гороха приходилось три желтых морщинистых, три зеленых гладких и одно зеленое морщинистое.
Третий закон Менделя хорошо иллюстрирует решетка Пеннета. Здесь в заголовках строк и столбцов пишутся возможные гаметы родителей (в данном случае гибридов первого поколения). Вероятность образования каждого типа гаметы составляет ¼. Также равновероятно различное их объединение в одну зиготу.
Мы видим, что образуется четыре фенотипа, два из которых ранее не существовали. Соотношение фенотипов 9 : 3 : 3 : 1. Количество разных генотипов и их соотношение более сложное:
Получается 9 разных генотипов. Их соотношение: 4 : 2 : 2 : 2 : 2 : 1 : 1 : 1 : 1. При этом гетерозиготы встречаются чаще, а гомозиготы реже.
Если вернуться к тому, что каждый признак наследуется независимо, и по каждому наблюдается расщепление 3:1, то можно вычислить вероятность фенотипов по двум признакам разных аллелей, умножая вероятность проявления каждого аллеля (т. е. не обязательно пользоваться решеткой Пеннета). Так, вероятность гладких желтых семян будет равна ¾ × ¾ = 9/16, гладких зеленых – ¾ × ¼ = 3/16, морщинистых желтых – ¼ × ¾ = 3/16, морщинистых зеленых – ¼ × ¼ = 1/16. Таким образом, мы получаем то же соотношение фенотипов: 9:3:3:1.
Когда не действует закон независимого наследования признаков
Третий закон Менделя, или закон независимого наследования признаков, действует только для генов, локализованных в разных хромосомах или расположенных в одной хромосоме, но достаточно далеко друг от друга.
В основном если гены находятся в одной хромосоме, то они наследуются совместно, то есть проявляют сцепление между собой, и закон независимого наследования признаков уже не действует.
Например, если бы гены, отвечающие за окраску и форму семян гороха находились в одной хромосоме, то гибриды первого поколения могли бы образовывать гаметы только двух типов ( AB и ab ), так как в процессе мейоза независимо друг от друга расходятся родительские хромосомы, но не отдельные гены. В таком случае во втором поколении было бы расщепление 3:1 (три желтых гладких на одно зеленое морщинистое).
Законы Менделя кратко и понятно
В этой статье кратко и понятно описываются три закона Менделя. Эти законы — основа всей генетики, создав их, Мендель фактически создал эту науку.
Здесь Вы найдёте определение каждого закона и узнаете немного нового о генетике и биологии в целом.
Перед началом чтения статьи стоит понимать, что генотип — это совокупность генов организма, а фенотип — его внешних признаков.
Кто такой Мендель и чем он занимался
Грегор Иоганн Мендель — известный австрийский биолог, родившийся в 1822 году в деревне Гинчице. Хорошо учился, но у семьи его были материальные трудности. Чтобы разобраться с ними, Иоганн Мендель в 1943 году решил стать монахом чешского монастыря в городе Брно и получил там имя Грегор.
Грегор Иоганн Мендель (1822 1884)
Позже изучал биологию в Венском университете, а затем решил преподавать физику и природоведение в Брно. Тогда же учёный заинтересовался ботаникой. Он проводил опыты по скрещиванию гороха. На основе результатов этих опытов учёный вывел три закона наследственности, которым и посвящена эта статья.
Опубликованные в работе «Опыты с гибридами растений» в 1866 году, эти законы не получили широкой огласки, и вскоре работа была забыта. О ней вспомнили лишь после смерти Менделя в 1884 году. Вам уже известно, сколько законов он вывел. Теперь пора перейти к рассмотрению каждого.
Первый закон Менделя — закон единообразия гибридов первого поколения
Рассмотрим опыт, проведённый Менделем. Он взял два вида гороха. Эти виды различали цветом цветков. У одного они были пурпурные, а у другого — белые.
Скрестив их, учёный увидел, что у всего потомства цветки пурпурные. А горох жёлтого и зелёного цвета дал полностью жёлтое потомство. Биолог повторял эксперимент ещё много раз, проверяя наследование разных признаков, однако результат всегда был один.
На основе этих опытов учёный вывел свой первый закон, вот его формулировка: все гибриды в первом поколении всегда наследуют лишь один признак от родителей.
Обозначим ген, отвечающий за пурпурные цветки, как A, а за белые— a. Генотип одного родителя — AA (пурпурные), а второго — aa (белые). От первого родителя будет унаследован ген A, а от второго — a. Значит, генотип потомства всегда будет Aa. Ген, обозначенный заглавной буквой, называется доминантным, а строчной — рецессивным.
Если в генотипе организма содержатся два доминантных или два рецессивных гена, то его называют гомозиготным, а организм, содержащий разные гены — гетерозиготным. Если организм гетерозиготен, то рецессивный ген, обозначаемый прописной буквой, подавляется более сильным доминантным, в результате проявляется признак, за который отвечает доминантный. Значит, горох с генотипом Aa будет обладать пурпурными цветками.
Скрещивание двух гетерозиготных организмов с разными признаками — это моногибридное скрещивание.
Кодоминирование и неполное доминирование
Бывает такое, что доминантный ген не может подавить рецессивный. И тогда в организме проявляются оба родительских признака.
Такое явление можно наблюдать на примере камелии. Если в генотипе этого растения один ген отвечает за красные лепестки, а другой — за белые, то половина лепестков камелии станут красными, а остальные — белыми.
Такое явление называют кодоминированием.
Неполное доминирование — похожее явление, при котором появляется третий признак, нечто среднее между тем, что было у родителей. Например, цветок ночная красавица с генотипом, содержащим и белые, и красные лепестки, окрашивается в розовый.
Второй закон Менделя — закон расщепления
Итак, мы помним, что при скрещивании двух гомозиготных организмов всё потомство примет лишь один признак. Но что, если взять из этого потомства два гетерозиготных организма и скрестить их? Будет ли потомство единообразным?
Вернёмся к гороху. Каждый родитель с равной вероятностью передаст либо ген A, либо ген a. Тогда потомство разделится следующим образом:
Видно, что организмов с пурпурными цветками в три раза больше. Это явление расщепления. В этом и заключается второй закон Грегора Менделя: при скрещивании гетерозиготных организмов потомство расщепляется в соотношении 3:1 по фенотипу и 1:2:1 по генотипу.
Впрочем, существуют так называемые летальные гены. При их наличии происходит отклонение от второго закона. Например, потомство жёлтых мышей расщепляется в соотношении 2:1.
То же происходит и с лисицами платинового цвета. Дело в том, что если в генотипе этих (и некоторых других) организмов оба гена доминантные, то они просто погибают. В результате доминантный ген может проявляться только если организм гетерозиотен.
Закон чистоты гамет и его цитологическое обоснование
Возьмём жёлтый горох и зелёный горох, ген жёлтого цвета — доминантный, а зелёного — рецессивный. В гибриде будут содержаться оба этих гена (хотя мы увидим лишь проявление доминантного).
Известно, что от родителя к потомству гены переносятся с помощью гамет. Гамета — это половая клетка. В генотипе гибрида имеется два гена, выходит, в каждой гамете — а их две — находилось по одному гену. Слившись, они образовали генотип гибрида.
Если во втором поколении проявился рецессивный признак, характерный одному из родительских организмов, значит, выполнялись следующие условия:
Второй пункт — закон чистоты гамет. Конечно, гена не два, их больше. Существует понятие аллельных генов. Они отвечают за один и тот же признак. Зная это понятие, можно сформулировать закон так: в гамету проникает по одному, случайно выбранному, гену из аллели.
Цитологическая основа данного правила: клетки, в которых находятся содержащие пары аллелей хромосомы со всей генетической информацией, делятся и образуют клетки, в которых есть лишь по одной аллели — гаплоидные клетки. В данном случае это гаметы.
Третий закон Менделя — закон независимого наследования
Выполнение третьего закона возможно при дигибридном скрещивании, когда исследуется не один признак, а несколько. В случае с горохом это, например, цвет и гладкость семян.
Гены, отвечающие за цвет семян, обозначим как A (жёлтый) и a (зелёный), за гладкость — B (гладкие) и b (морщинистые). Попробуем провести дигибридное скрещивание организмов с разными признаками.
Первый закон не нарушается при таком скрещивании, то есть гибриды будут одинаковы и по генотипу (AaBb), и по фенотипу (с жёлтыми гладкими семенами).
Каким же будет расщепление во втором поколении? Чтобы это узнать, необходимо выяснить, какие гаметы могут выделить родительские организмы. Очевидно, это AB, Ab, aB и ab. После этого строится схема, называемая решёткой Пиннета.
По горизонтали перечисляются все гаметы, которые может выделить один организм, а по вертикали — другой. Внутри решётки записывается генотип организма, который появился бы при данных гаметах.
AB | Ab | aB | ab | |
AB | AABB | AABb | AaBB | AaBb |
Ab | AABb | AAbb | AaBb | Aabb |
aB | AaBB | AaBb | aaBB | aaBb |
ab | AaBb | Aabb | aaBb | aabb |
Если изучить таблицу, можно прийти к выводу, что расщепление гибридов второго поколения по фенотипу происходит в соотношении 9:3:3:1. Это понял и Мендель, проведя несколько экспериментов.
Помимо этого он также пришёл к выводу, что то, какой из генов одной аллели (Aa) попадёт в гамету, не зависит от другой аллели (Bb), то есть существует только независимое наследование признаков. Это и есть его третий закон, называемый законом независимого наследования.
Заключение
Три закона Менделя — основные генетические законы. Благодаря тому, что один человек решил поэкспериментировать с горохом, биология получила новый раздел — генетику.
С её помощью учёные со всего мира научились множеству вещей, начиная предотвращением болезней, заканчивая генной инженерией. Генетика — это один из самых интересных и перспективных разделов биологии.
Законы Менделя: первый, второй и третий закон Менделя
Законы Менделя основаны на экспериментальных результатах гибридизации растений. Первый ботаник-гибридизатор был в 17 веке, Карл фон Линне, которому мы обязаны систематикой видов растений. Многочисленные ботаники в конце 18 — первой половине 19 века провели гибридизацию с двумя целями: либо показать, что только вид стабилен, гибриды нестабильны не могут долго сохраняться, либо с целью улучшения культурных растений. Первые были учеными-креационистами и фиксистами, вторые — агрономы. Они считали, что они сделали гибриды между разными сортами одного вида, а не межвидовые гибриды. Во всяком случае, мы задолго до работ Менделя знали принцип единообразия гибридов первого поколения, который часто ошибочно считают первым из законов Менделя.
Эксперименты Менделя
Не возвращаясь к расхождениям в интерпретации экспериментов Менделя между их автором и современными генетиками, можно вкратце напомнить, что путем скрещивания
гладкого горошка и морщинистого горошка Мендель получил гладкий гибридный горошек (который в точности соответствовал принципу однородности гибридов первого поколения), а также путем скрещивания между семенами этого горошка он получил 3/4 гладкого гороха и 1/4 морщинистого горошка (рисунок 1).
Отсюда следует первый закон Менделя.
Затем Мендель скрестил горох, различающийся двумя признаками: желтый гладкий горошек и зеленый морщинистый горошек. Гибриды первого поколения, очевидно, были
одинаковые (гладкие и желтые), эти скрещенные между ними дали рождение, рядом с от родительских типов к новым видам: зеленый горошек гладкий и горох желтый морщинистый (рисунок 2) в определенных пропорциях.
Рис.2. Скрещивание гладкого желтого и зеленого морщинистого горошка
На основании этих результатов Мендель сформулировал свой второй закон.
«Если скрестить индивидов, которые отличаются уже не одним, а несколькими признаками, эти признаки наследуются независимо друг от друга и связаны в потомках только по законам случая. »
Неуниверсальный закон, работает только для персонажей, имеющих пары разных хромосом.
Пример: Горох. Наблюдение за цветом (желтый / зеленый) и формой (гладкий / морщинистый).
Родители гетерозиготны по каждому из этих признаков. На шахматной доске Паннета из 16 квадратов получится: 9/16 желтого / круглого, 3/16 зеленого / круглого, 3/16 желтого / гладкого и 1/16 зеленого / гладкого (дигибридизм).
Каждый персонаж независим от других.
Эти законы, из которых проистекают понятия доминирования и рецессивности, всегда включены повестку дня генетиков, поскольку они все еще используются в медицинской генетике для расчета риска развития наследственного заболевания.
Оценка двух первых законов Менделя и открытие хромосом
Принято говорить, что законы Менделя канули в Лету на сорок лет. На самом деле их не игнорировали, но и игнорировали. Окончательно эти законы были допущены в науку биологию только тогда, когда они были подтверждены изложением теории хромосомной наследственности, которая распознала хромосому как опору наследственных характеристик.
Именно с этого момента законы Менделя послужили основой для изучения генетики в целом и генетики человека в частности.
В начале 20 века генетика как в царстве растений, так и в царстве животных быстро извлекла пользу из результатов многочисленных экспериментов. Однако тут не было
случаев для генетики человека, где эксперименты невозможны, что мы можем легко понять, особенно когда мы знаем, что Мендель скрестил людей первого поколения, то есть братьев и сестер, что противоречит хорошим манерам и что сегодня можно было бы назвать «неуместными отношениями».
В то время единственным способом понять генетику человека было узнать, передались ли морфологические или патологические признаки согласно законам Менделя. Фактически, можно анализировать через деревья генеалогии, как ведут себя персонажи и являются ли они родственниками или нет, то есть подчиняются ли законам Менделя. Это такой подход
что позволил выделить среди патологий те, которые можно отнести к наследственным заболеваниям, различая доминантные и рецессивные заболевания, аутосомные или связанные с полом.
Таким образом, в течение первой половины этого столетия развивалась наука «генетическая патология», но без изоляции, то есть развитие ее было внутри раздела «медицинской генетики» — лечебная патология. Гемофилия была исследована превыше всего, а также другие болезни крови, миопатия, болезнь мышечной системы и т. д.
Наряду с этими наследственными заболеваниями, разбросанными по разным разделам медицинской патологии, иногда генетики ошибались, считая, диабет тоже наследственное заболевание, но было ясно, что оно не имеет ничего общего с генетическим заболеванием!
Такой жесткий и ограниченный подход задержал появление медицинской генетики на протяжении более половины 20 века.
Законы Менделя
Между 1856-1863 годами Мендель проводил эксперименты по гибридизации огородного гороха. В течение этого периода он выбрал некоторые отличительные черты гороха и провел перекрестное / искусственное опыление на линиях гороха, которые показали стабильную наследственность и подверглись непрерывному самоопылению. Такие линии гороха называются чистопородными линиями гороха.
Для своих опытов он выбрал горох:
Мендель провел 2 основных эксперимента по определению законов наследования. Эти эксперименты были:
Экспериментируя, Мендель обнаружил, что определенные факторы всегда стабильно передавались потомству. Эти факторы теперь называются генами, то есть гены можно назвать единицами наследования.
Эксперименты Менделя
Мендель экспериментировал с растением гороха и рассмотрел 7 основных контрастирующих признаков у растений. Затем он провел оба эксперимента, чтобы определить вышеупомянутые законы наследования. Краткое объяснение этих двух экспериментов дается ниже.
Моногибридное скрещивание
В этом эксперименте Мендель взял два растения гороха противоположных признаков (одно короткое и одно высокое) и скрестил их. Он обнаружил, что потомство первого поколения было высоким, и назвал его потомством F1. Затем он скрестил потомство F1 и получил как высокие, так и короткие растения в соотношении 3: 1.
Мендель даже провел этот эксперимент с другими контрастирующими признаками, такими как зеленый горошек против желтого горошка, круглый или морщинистый и т. д. Во всех случаях он обнаружил, что результаты были одинаковыми. Исходя из этого, он сформулировал законы сегрегации и доминирования.
Дигибридное скрещивание
В эксперименте с дигибридным скрещиванием Мендель рассмотрел два признака, каждый из которых имеет два аллеля. Он скрестил морщинистые зеленые семена и округло-желтые семена и заметил, что все потомство первого поколения (потомство F1) было округло-желтым. Это означало, что доминирующими чертами были круглая форма и желтый цвет.
Затем он самоопылял потомство F1 и получил 4 разных признака: морщинисто-желтые, округло-желтые, морщинисто-зеленые семена и округло-зеленые семена в соотношении 9: 3: 3: 1.
После проведения по другим признакам результаты оказались аналогичными. На основе этого эксперимента Мендель сформулировал свой второй закон наследования, то есть закон независимого наследования.
Выводы из экспериментов Менделя
Законы Менделя
Два эксперимента приводят к формулировке законов Менделя, известных как законы наследования, а именно:
Закон господства
Его также называют первым наследственным законом Менделя. По закону доминирования гибридные потомки наследуют только доминантный признак фенотипа. Подавленные аллели называются рецессивными, в то время как аллели, определяющие признак, называются доминантными.
Закон расщепления
Закон расщепления гласит, что во время производства гамет две копии каждого наследственного фактора разделяются, так что потомство получает по одному фактору от каждого родителя. Другими словами, пары аллелей (альтернативная форма гена) разделяются во время формирования гамет и повторно объединяются случайным образом во время оплодотворения. Этот закон также известен как третий закон Менделя о наследовании.
Закон независимого признака
Также известный как второй закон наследования Менделя, закон независимого распределения утверждает, что пара признаков отделяется независимо от другой пары во время формирования гамет. Поскольку индивидуальные факторы наследственности сортируются независимо друг от друга, разные черты имеют равные возможности встречаться вместе.
Ключевые положения законов Менделя
Что является общепринятым законом о наследстве?
Закон о расщеплении признаков — это общепринятый закон о наследовании. Это единственный закон без исключений. Он утверждает, что каждый признак состоит из двух аллелей, которые разделяются во время образования гамет, и по одному аллелю от каждого родителя объединяется во время оплодотворения.
Закон расщепления известен как закон чистоты гамет, потому что гамета несет только рецессивный или доминантный аллель, но не оба аллеля.
Теперь вы знаете законы Менделя. Главное, научиться их не путать. Удачи на экзаменах.