Треугольник серпинского что это
Треугольник Серпинского
Треугольник Серпинского — фрактал, один из двумерных аналогов множества Кантора, предложенный польским математиком Серпинским в 1915 году. Также известен как «решётка» или «салфетка» Серпинского.
Содержание
Построение
Равносторонний треугольник делится прямыми, параллельными его сторонам, на 4 равных равносторонних треугольника. Из треугольника удаляется центральный треугольник. Получается множество
, состоящее из 3 оставшихся треугольников «первого ранга». Поступая точно так же с каждым из треугольников первого ранга, получим множество
, состоящее из 9 равносторонних треугольников второго ранга. Продолжая этот процесс бесконечно, получим бесконечную последовательность
пересечение членов которой есть треугольник Серпинского.
Свойства
Интересные факты
Примечания
Ссылки
Циклоида • Эпициклоида • Гипоциклоида • Трохоида (Удлинённая + Укороченная циклоида) • Эпитрохоида (Удлинённая + Укороченная эпициклоида • («Роза») • Гипотрохоида • Скорейшего спуска (Брахистохрона, дуга циклоиды)
Полезное
Смотреть что такое «Треугольник Серпинского» в других словарях:
Треугольник (значения) — В Викисловаре есть статья «треугольник» Треугольник в широком смысле объект треугольной формы, либо тройка объектов, попарно связ … Википедия
Треугольник Рёло — Построение треугольника Рёло Треугольник Рёло[* 1] предста … Википедия
Салфетка Серпинского — Треугольник Серпинского Треугольник Серпинского фрактал, один из двумерных аналогов множества Кантора предложенный польским математиком Серпинским в 1915 году. Также известен как «решётка» или «салфетка» Серпинского. Построение Берётся сплошной… … Википедия
Ковёр Серпинского — Ковёр (квадрат) Серпинского Ковёр Серпинского (квадрат Серпинского) фрактал, один из двумерных аналогов множества Кантора, предложенный польским математиком Вац … Википедия
Ковер Серпинского — Коврик Серпинского Ковёр Серпинского фрактал, один из двумерных аналогов множества Кантора предложенный польским математиком Вацлавом Серпинским. Также известен как квадрат Серпинского. Содержание 1 Построение … Википедия
Коврик Серпинского — Ковёр Серпинского фрактал, один из двумерных аналогов множества Кантора предложенный польским математиком Вацлавом Серпинским. Также известен как квадрат Серпинского. Содержание 1 Построение … Википедия
Фрактальное сжатие — Треугольник Серпинского изображение, задаваемое тремя аффинными преобразованиями Фрактальное сжатие изображений это алгоритм сжатия изображений c потерями, основанный на применении систем итерируемых функций (IFS, как правило являющимися… … Википедия
Алгоритм фрактального сжатия — Треугольник Серпинского изображение, задаваемое тремя аффинными преобразованиями Фрактальное сжатие изображений алгоритм сжатия изображений c … Википедия
Фрактал — Множество Мандельброта классический образец фрактала … Википедия
Фрактальная графика — Множество Мандельброта классический образец фрактала Фрактал (лат. fractus дробленый) термин, означающий геометрическую фигуру, обладающую свойством самоподобия, то есть составленную из нескольких частей, каждая из которых подобна всей фигуре… … Википедия
Треугольник Серпинского и треугольник Паскаля
Что это?
Треугольник Серпинского
Треугольник Серпинского — один из известнейших фракталов, его построение — одна из первых лабораторных работ на рекурсию по соответствующим дисциплинам во многих ВУЗах. Выглядит фрактал следующим образом:
Треугольник Паскаля
Треугольник Паскаля — бесконечная таблица биномиальных коэффициентов, имеющая треугольную форму. В этом треугольнике на вершине и по бокам стоят единицы. Каждое число равно сумме двух расположенных над ним чисел. Строки треугольника симметричны относительно вертикальной оси.
И что с того?
Есть в треугольнике Паскаля интересная особенность. Он отображает вышеупомянутый фрактал своими числами. Если долго всматриваться в бездну, бездна начинает всматриваться в тебя значения, то можно увидеть, что чётные и нечетные числа располагаются группами, ибо есть одно негласное всем известное правило: четное+нечетное=нечетное, четное+четное=четное, нечетное+нечетное=четное.
Что ж, меньше слов, больше дела. Сделаем вывод немного нагляднее. Людям, не интересующимся программной реализацией следующий абзац будет неинтересен.
Я взял старый алгоритм расчета-вывода треугольника Паскаля и преобразовал его таким образом, что вместо значения чисел выводится остаток от его деления на 2. Стало быть, четные теперь стали нулями, нечетные — единицами. Сам код прилагаю ниже
Для пущей наглядности я разукрасил вывод следующим способом: вывод программы перенаправляется в файл, откуда по завершению выполнения первой, перл своими регэкспами заменяет единицы на красные буквы О, нули — на синие. Код скрипта ниже:
Из исходника видно, что смотреть мы будем html. Почему? Из соображений простоты. Только дерево DOM неверное получается. Исправим это скриптом на BASH и автоматизируем всё вышеописанное:
Итак, мы компилируем исходник на плюсах, его вывод уходит в текстовичок, баш «эхает» в html на перезапись началом дерева DOM, после чего текстовичок берет перл-скрипт, переделывает его в разноцветную html-версию, дополняет htmlку, после чего любезный БАШ снова завершает формирование дерева. Запускаем, смотрим:
Подчеркнем и сравним с оригиналом
PROFIT
Молекулярный треугольник Серпинского
Эта структура, напоминающая треугольник Серпинского, получена самосборкой в сверхглубоком вакууме из атомов железа и органических молекул. Вы видите два полных треугольника Серпинского пятого порядка, соединенных между собой; длина стороны каждого из них составляет 0,05 микрометров. Справа внизу дорисован еще один треугольник: если бы он тоже получился самосборкой, можно было бы говорить уже о полном треугольнике шестого порядка. На данный момент это самый большой молекулярный фрактальный треугольник. Два года назад был получен фрактальный треугольник четвертого порядка, причем из совсем других молекул.
Важное свойство фракталов — их самоподобие. Фрактальный объект в точности или приближенно совпадает с частью себя самого, то есть целое имеет ту же (или почти ту же) форму, как одна или несколько его частей. Точное совпадение в реальности невозможно, это математическая абстракция. Однако вокруг нас много объектов, которые до некоторой степени фрактальны, — например, деревья. Многие фракталы можно строить итеративно, повторяя одни и те же действия снова и снова, но на всё меньших масштабах. Треугольник Серпинского строится так: берется равносторонний треугольник, в котором проводятся средние линии. Затем средние линии проводятся в каждом из образовавшихся трех угловых треугольничков и так далее до бесконечности (подробнее см. анимацию Треугольник Серпинского). Пятикратное повторение этой процедуры и дает фигуру, которая получилась у химиков, — треугольник Серпинского пятого порядка.
Рекордный фрактальный треугольник состоит из 495 атомов железа и 754 органических лигандов-линкеров. Использовались линкеры двух видов: 1,1:3’1’’-трифенил-4,4’’-дикарбонитрил (C3PC) и 1,3-бис(4-пиридил)бензол (BPyB). Атомы железа и органические линкеры, будучи помещенными на идеально гладкую золотую поверхность, самопроизвольно выстраивались в треугольник. Полученную структуру рассматривали при помощи сканирующей туннельной микроскопии, однако сам микроскоп для ее сборки не применяли (как это было в случае получения декацена).
Органические строительные блоки, которые совместно с атомами железа самоорганизовались в треугольник Серпинского пятого уровня
Предполагается, что в данном случае механизм самосборки следующий: атомы железа, размещенные на ровной поверхности золота, вынуждают строительные блоки C3PC ориентироваться с образованием замкнутых металлосодержащих полимеров треугольной формы. Когда же добавляют второй лиганд, BPyB, устойчивость больших цепей понижается, и они переформируются во фрактальные фигуры треугольной формы. Органические молекулы-линкеры и атомы железа самоорганизуются в треугольник Серпинского пятого порядка только тогда, когда на три молекулы C3PC приходится одна молекула BPyB. Этому способствовует также то, что у обоих лигандов атомы азота, образущие связи с железом, расположены под углом 120 градусов.
Схема получения треугольника Серпинского пятого порядка — в сверхглубоком вакууме составляющие его молекулярные фрагменты самостоятельно выстроились в такую симметричную структуру. Рисунок из статьи C. Li et al., 2017. Construction of Sierpiński Triangles up to the Fifth Order
И хотя исследователями двигало обычное научное любопытство, эта работа может иметь также фундаментальное и прикладное значение. Например, во фрактальных молекулярных комплексах могут наблюдаться необычные механические и магнитные свойства, которые впоследствии окажутся для чего-нибудь важными или полезными.
Треугольник Серпинского
Для просмотра анимации необходимо включить JavaScript.
Этот фрактал описал в 1915 году польский математик Вацлав Серпинский. Чтобы его получить, нужно взять (равносторонний) треугольник с внутренностью, провести в нём средние линии и выкинуть центральный из четырех образовавшихся маленьких треугольников. Дальше эти же действия нужно повторить с каждым из оставшихся трех треугольников, и т. д. На рисунке показаны первые три шага, а на флэш-демонстрации вы можете потренироваться и получить шаги вплоть до десятого.
Выкидывание центральных треугольников — не единственный способ получить в итоге треугольник Серпинского. Можно двигаться «в обратном направлении»: взять изначально «пустой» треугольник, затем достроить в нём треугольник, образованный средними линиями, затем в каждом из трех угловых треугольников сделать то же самое, и т. д. Поначалу фигуры будут сильно отличаться, но с ростом номера итерации они будут всё больше походить друг на друга, а в пределе совпадут.
Следующий способ получить треугольник Серпинского еще больше похож на обычную схему построения геометрических фракталов с помощью замены частей очередной итерации на масштабированный фрагмент. Здесь на каждом шаге составляющие ломаную отрезки заменяются на ломаную из трех звеньев (она сама получается в первой итерации). Откладывать эту ломаную нужно попеременно то вправо, то влево. Видно, что уже восьмая итерация очень близка к фракталу, и чем дальше, тем ближе будет подбираться к нему линия.
Но и на этом не всё. Оказывается, треугольник Серпинского получается в результате одной из разновидностей случайного блуждания точки на плоскости. Этот способ называется «игрой Хаос». С его помощью можно построить и некоторые другие фракталы.
Суть «игры» такова. На плоскости зафиксирован правильный треугольник A1A2A3. Отмечают любую начальную точку B0. Затем случайным образом выбирают одну из трех вершин треугольника и отмечают точку B1 — середину отрезка с концами в этой вершине и в B0 (на рисунке справа случайно выбралась вершина A1). То же самое повторяют с точкой B1, чтобы получить B2. Потом получают точки B3, B4, и т. д. Важно, чтобы точка «прыгала» случайным образом, то есть чтобы каждый раз вершина треугольника выбиралась случайно, независимо от того, что было выбрано в предыдущие шаги. Удивительно, что если отмечать точки из последовательности Bi, то вскоре начнет проступать треугольник Серпинского. Ниже изображено, что получается, когда отмечено 100, 500 и 2500 точек.
Некоторые свойства
Варианты
Ковер (квадрат, салфетка) Серпинского. Квадратная версия была описана Вацлавом Серпинским в 1916 году. Ему удалось доказать, что любая кривая, которую можно нарисовать на плоскости без самопересечений, гомеоморфна какому-то подмножеству этого дырявого квадрата. Как и треугольник, квадрат можно получить из разных конструкций. Справа изображен классический способ: разделение квадрата на 9 частей и выбрасывание центральной части. Затем то же повторяется для оставшихся 8 квадратов, и т. д.
Как и у треугольника, у квадрата нулевая площадь. Фрактальная размерность ковра Серпинского равна log38, вычисляется аналогично размерности треугольника.
Пирамида Серпинского. Один из трехмерных аналогов треугольника Серпинского. Строится аналогично с учетом трехмерности происходящего: 5 копий начальной пирамиды, сжатой в два раза, составляют первую итерацию, ее 5 копий составят вторую итерацию, и т. д. Фрактальная размерность равна log25. У фигуры нулевой объем (на каждом шаге половина объема выбрасывается), но при этом площадь поверхности сохраняется от итерации к итерации, и у фрактала она такая же, как и у начальной пирамиды.
Губка Менгера. Обобщение ковра Серпинского в трехмерное пространство. Чтобы построить губку, нужно бесконечное повторение процедуры: каждый из кубиков, из которых состоит итерация, делится на 27 втрое меньших кубиков, из которых выбрасывают центральный и его 6 соседей. То есть каждый кубик порождает 20 новых, в три раза меньших. Поэтому фрактальная размерность равна log320. Этот фрактал является универсальной кривой: любая кривая в трехмерном пространстве гомеоморфна некоторому подмножеству губки. У губки нулевой объем (так как на каждом шаге он умножается на 20/27), но при этом бесконечно большая площадь.
Треугольник Серпинского
Для просмотра анимации необходимо включить JavaScript.
Этот фрактал описал в 1915 году польский математик Вацлав Серпинский. Чтобы его получить, нужно взять (равносторонний) треугольник с внутренностью, провести в нём средние линии и выкинуть центральный из четырех образовавшихся маленьких треугольников. Дальше эти же действия нужно повторить с каждым из оставшихся трех треугольников, и т. д. На рисунке показаны первые три шага, а на флэш-демонстрации вы можете потренироваться и получить шаги вплоть до десятого.
Выкидывание центральных треугольников — не единственный способ получить в итоге треугольник Серпинского. Можно двигаться «в обратном направлении»: взять изначально «пустой» треугольник, затем достроить в нём треугольник, образованный средними линиями, затем в каждом из трех угловых треугольников сделать то же самое, и т. д. Поначалу фигуры будут сильно отличаться, но с ростом номера итерации они будут всё больше походить друг на друга, а в пределе совпадут.
Следующий способ получить треугольник Серпинского еще больше похож на обычную схему построения геометрических фракталов с помощью замены частей очередной итерации на масштабированный фрагмент. Здесь на каждом шаге составляющие ломаную отрезки заменяются на ломаную из трех звеньев (она сама получается в первой итерации). Откладывать эту ломаную нужно попеременно то вправо, то влево. Видно, что уже восьмая итерация очень близка к фракталу, и чем дальше, тем ближе будет подбираться к нему линия.
Но и на этом не всё. Оказывается, треугольник Серпинского получается в результате одной из разновидностей случайного блуждания точки на плоскости. Этот способ называется «игрой Хаос». С его помощью можно построить и некоторые другие фракталы.
Суть «игры» такова. На плоскости зафиксирован правильный треугольник A1A2A3. Отмечают любую начальную точку B0. Затем случайным образом выбирают одну из трех вершин треугольника и отмечают точку B1 — середину отрезка с концами в этой вершине и в B0 (на рисунке справа случайно выбралась вершина A1). То же самое повторяют с точкой B1, чтобы получить B2. Потом получают точки B3, B4, и т. д. Важно, чтобы точка «прыгала» случайным образом, то есть чтобы каждый раз вершина треугольника выбиралась случайно, независимо от того, что было выбрано в предыдущие шаги. Удивительно, что если отмечать точки из последовательности Bi, то вскоре начнет проступать треугольник Серпинского. Ниже изображено, что получается, когда отмечено 100, 500 и 2500 точек.
Некоторые свойства
Варианты
Ковер (квадрат, салфетка) Серпинского. Квадратная версия была описана Вацлавом Серпинским в 1916 году. Ему удалось доказать, что любая кривая, которую можно нарисовать на плоскости без самопересечений, гомеоморфна какому-то подмножеству этого дырявого квадрата. Как и треугольник, квадрат можно получить из разных конструкций. Справа изображен классический способ: разделение квадрата на 9 частей и выбрасывание центральной части. Затем то же повторяется для оставшихся 8 квадратов, и т. д.
Как и у треугольника, у квадрата нулевая площадь. Фрактальная размерность ковра Серпинского равна log38, вычисляется аналогично размерности треугольника.
Пирамида Серпинского. Один из трехмерных аналогов треугольника Серпинского. Строится аналогично с учетом трехмерности происходящего: 5 копий начальной пирамиды, сжатой в два раза, составляют первую итерацию, ее 5 копий составят вторую итерацию, и т. д. Фрактальная размерность равна log25. У фигуры нулевой объем (на каждом шаге половина объема выбрасывается), но при этом площадь поверхности сохраняется от итерации к итерации, и у фрактала она такая же, как и у начальной пирамиды.
Губка Менгера. Обобщение ковра Серпинского в трехмерное пространство. Чтобы построить губку, нужно бесконечное повторение процедуры: каждый из кубиков, из которых состоит итерация, делится на 27 втрое меньших кубиков, из которых выбрасывают центральный и его 6 соседей. То есть каждый кубик порождает 20 новых, в три раза меньших. Поэтому фрактальная размерность равна log320. Этот фрактал является универсальной кривой: любая кривая в трехмерном пространстве гомеоморфна некоторому подмножеству губки. У губки нулевой объем (так как на каждом шаге он умножается на 20/27), но при этом бесконечно большая площадь.