У чего лучше теплоотдача алюминий или медь
Теплоотдача меди и алюминия
Все изделия, используемые человеком, способны передавать и сохранять температуру прикасаемого к ним предмета или окружающей среды. Способность отдачи тепла одного тела другому зависит от вида материала, через который проходит процесс. Свойства металлов позволяют передавать тепло от одного предмета другому, с определенными изменениями, в зависимости от структуры и размера металлической конструкции. Теплопроводность металлов — один из параметров, определяющих их эксплуатационные возможности.
Что такое теплопроводность и для чего нужна
Процесс переноса энергии атомов и молекул от горячих предметов к изделиям с холодной температурой, осуществляется при хаотическом перемещении движущихся частиц. Такой обмен тепла зависит от агрегатного состояния металла, через который проходит передача. В зависимости от химического состава материала, теплопроводность будет иметь различные характеристики. Данный процесс называют теплопроводностью, он заключается в передаче атомами и молекулами кинетической энергии, определяющей нагрев металлического изделия при взаимодействии этих частиц, или передается от более теплой части – к той, которая меньше нагрета.
Способность передавать или сохранять тепловую энергию, позволяет использовать свойства металлов для достижения необходимых технических целей в работе различных узлов и агрегатов оборудования, используемого в народном хозяйстве. Примером такого применения может быть паяльник, нагревающийся в средней части и передающий тепло на край рабочего стержня, которым выполняют пайку необходимых элементов. Зная свойства теплопроводности, металлы применяют во всех отраслях промышленности, используя необходимый параметр по назначению.
Коэффициент теплопроводности металлов (Таблица)
Теплопроводность многих металлов следует соотношению k = 2,5·10-8σT, где Т обозначает температуру в °К, а σ — электропроводность в единицах (ом·см)-1. Это соотношение, которое лучше всего оправдывается для хороших проводников электричества и при высоких температурах, можно применять и для определения коэффициентов теплопроводности.
Соотношение kpcp=const, где р обозначает плотность, а ср — удельную теплоемкость при постоянном давлении, было предложено Стормом для того, чтобы объяснить температурные изменения этих величин для некоторых металлов и сплавов.
Таблица коэффициент теплопроводности металлов
Элементы с металлической электропроводностью (числа, набранные курсивом, относятся к жидкой фазе)
Металл | Коэффициент теплопроводности металлов при температура, °С | ||||
— 100 | 0 | 100 | 300 | 700 | |
Алюминий | 2,45 | 2,38 | 2,30 | 2,26 | 0,9 |
Бериллий | 4,1 | 2,3 | 1,7 | 1,25 | 0,9 |
Ванадий | — | — | 0,31 | 0,34 | — |
Висмут | 0,11 | 0,08 | 0,07 | 0,11 | 0,15 |
Вольфрам | 2,05 | 1,90 | 1,65 | 1,45 | 1,2 |
Гафний | — | — | 0,22 | 0,21 | — |
Железо | 0,94 | 0,76 | 0,69 | 0,55 | 0,34 |
Золото | 3,3 | 3,1 | 3,1 | — | — |
Индий | — | 0,25 | — | — | — |
Иридий | 1,51 | 1,48 | 1,43 | — | — |
Кадмий | 0,96 | 0,92 | 0,90 | 0,95 | 0,44 (400°) |
Калий | — | 0,99 | — | 0,42 | 0,34 |
Кальций | — | 0,98 | — | — | — |
Кобальт | — | 0,69 | — | — | — |
Литий | — | 0,71 | 0,73 | — | — |
Магний | 1,6 | 1,5 | 1,5 | 1,45 | — |
Медь | 4,05 | 3,85 | 3,82 | 3,76 | 3,50 |
Молибден | 1,4 | 1,43 | — | — | 1,04 (1000°) |
Натрий | 1,35 | 1,35 | 0,85 | 0,76 | 0,60 |
Никель | 0,97 | 0,91 | 0,83 | 0,64 | 0,66 |
Ниобий | 0,49 | 0,49 | 0,51 | 0,56 | — |
Олово | 0,74 | 0,64 | 0,60 | 0,33 | — |
Палладий | 0,69 | 0,67 | 0,74 | — | — |
Платина | 0,68 | 0,69 | 0,72 | 0,76 | 0,84 |
Рений | — | 0,71 | — | — | — |
Родий | 1,54 | 1,52 | 1,47 | — | — |
Ртуть | 0,33 | 0,09 | 0.1 | 0,115 | — |
Свинец | 0,37 | 0,35 | 0,335 | 0,315 | 0,19 |
Серебро | 4,22 | 4,18 | 4,17 | 3,62 | — |
Сурьма | 0,23 | 0,18 | 0,17 | 0,17 | 0,21 |
Таллий | 0,41 | 0,43 | 0,49 | 0,25 (400 0) | |
Тантал | 0,54 | 0,54 | — | — | — |
Титан | — | — | 0,16 | 0,15 | — |
Торий | — | 0,41 | 0,39 | 0,40 | 0,45 |
Уран | — | 0,24 | 0,26 | 0,31 | 0,40 |
Хром | — | 0,86 | 0,85 | 0,80 | 0,63 |
Цинк | 1,14 | 1,13 | 1,09 | 1,00 | 0,56 |
Цирконий | — | 0,21 | 0,20 | 0,19 | — |
Таблица коэффициент теплопроводности полупроводники и изоляторы
Вещество | Коэффициент теплопроводности при температура, °С | ||||
— 100 | 0 | 100 | 500 | 700 | |
Германий | 1,05 | 0,63 | — | — | — |
Графит | — | 0,5—4,0 | 0,5—3,0 | 0,4-1,7 | 0,4-0,9 |
Йод | — | 0,004 | — | — | — |
Углерод | — | 0,016 | 0,017 | 0,019 | 0,023 |
Селен | — | 0,0024 | — | — | — |
Кремний | — | 0,84 | — | — | — |
Сера | — | 0,0029 | 0,0023 | — | — |
Теллур | — | 0,015 | — | — | — |
Понятие термического сопротивления и коэффициента теплопроводности
Если теплопроводность характеризует способность металлов передавать температуру тел от одной поверхности к иной, то термическое сопротивление показывает обратную зависимость, т.е. возможность металлов препятствовать такой передаче, иначе выражаясь, – сопротивляться. Высоким термическим сопротивлением обладает воздух. Именно он, больше всего, препятствует передаче тепла между телами.
Количественную характеристику изменения температуры единицы площади за единицу времени на один градус (К), называют коэффициентом теплопроводности. Международной системой единиц принято измерять этот параметр в Вт/м*град. Эта характеристика очень важна при выборе металлических изделий, которые должны передавать тепло от одного тела к другому.
Коэффициент теплопроводности металлов при температура, °С
Что быстрее нагреется медь или алюминий
Какой же все таки поставить радиатор? Я думаю каждый из нас задавался таким же вопросом придя на рынок или в магазин запчастей, осматривая огромный выбор радиаторов на любой вкус, удовлетворяющий даже самого извращенного привереды. Хочешь двух рядный, трех рядный, побольше, поменьше, с крупной секцией с мелкой, алюминиевый, медный. Вот именно из какого металла изготовлен радиатор и пойдет речь.
Одни считают, что медь. Это своеобразные староверы, так бы назвали их в XVII веке. Да, если взять не новые автомобили XX века, то тогда повсеместно устанавливались медные радиаторы. Не зависимо от марки и модели, была ли это бюджетная микролитражка или тяжеловесный многотонный грузовик. Но есть и другая армия автовладельцев утверждая что радиаторы изготовленные из алюминия лучше медных. Потому как их устанавливают на новые современные автомобили, на сверхмощные двигатели требующие качественного охлаждения.
И что самое интересное они все правы. И у тех и у других есть свои плюсы и естественно минусы. А теперь небольшой урок физики. Самым отличным показателем, на мой взгляд, являются цифры, а именно коэффициент теплопроводности. Если сказать по простому то это способность вещества передавать тепловую энергию от одного вещества другому. Т.е. у нас имеется ОЖ, радиатор из N-ного металла и окружающая среда. Теоретически чем выше коэффициент тем быстрее радиатор будет забирать тепловую энергию у ОЖ и быстрее отдавать в окружающую среду.
Итак, теплопроводность меди составляет 401 Вт/(м*К), а алюминия — от 202 до 236 Вт/(м*К). Но это в идеальных условиях. Казалось бы медь выиграла в данном споре, да это «+1» за медные радиаторы. Теперь кроме всего необходимо рассмотреть собственно конструкцию самих радиаторов.
Медные трубки в основе радиатора, так же медные ленты воздушного радиатора для передачи полученного тепла в окружающую среду. Крупные ячейки сот радиатора позволяют снизить потери скорости воздушного потока и позволяют прокачать большой объем воздуха за единицу времени. Слишком малая концентрация ленточной части радиатора снижает эффективность теплопередачи и увеличивает концентрацию и силу локального нагрева радиатора.
Я нашел два вида радиаторов в основе которых лежат алюминиевые и стальные трубки. Вот еще не маловажная часть, т.к. коэффициент теплопроводности стали очень мал по сравнению с алюминием, всего лишь 47 Вт/(м*К). И собственно только из-за высокой разности показателей, уже не стоит устанавливать алюминиевые радиаторы со стальными трубками. Хотя они прочнее чистокровных алюмишек и снижают риски протечки от высокого давления, например при заклинившем клапане в крышке расширительного бачка. Высокая концентрация алюминиевых пластин на трубках увеличивает площадь радиатора обдуваемого воздухом тем самым увеличивая его эффективность, но при этом увеличивается сопротивление воздушного потока и снижается объем прокачиваемого воздуха.
От чего зависит показатель теплопроводности
Изучая способность передачи тепла металлическими изделиями выявлено, что теплопроводность зависит от:
Металлы имеют различное строение кристаллической решетки, а это может изменить теплопроводность материала. Так, например, у стали и алюминия, особенности строения микрочастиц влияют по-разному на скорость передачи тепловой энергии через них.
Коэффициент теплопроводности может иметь различные значения для одного и того же металла при изменении температуры воздействия. Это связано с тем, что у разных металлов градус плавления отличается, а значит, при других параметрах окружающей среды, свойства материалов также будут отличаться, а это отразится на теплопроводности.
Понятие коэффициента теплопроводности
Для обозначения рассматриваемого значения применяется символ λ — количество тепла, которое передается в единицу времени через единицу поверхности на момент повышения температуры. Это значение применяется при проведении различных расчетов.
Описание свойства теплопроводности многих металлов проводится по формуле k = 2,5·10−8σT. В этой формуле учитывается:
Это соотношение больше всего подходит для определения свойств проводников на момент эксплуатации при нагреве, но в последнее время применяется и для измерения степени проводимости тепловой энергии.
Полупроводники и изоляторы обладают более низкими показателями проводимости тепла, что связано с особенностями строения их кристаллической решетки.
Методы измерения
Для измерения теплопроводности металлов используют два метода: стационарный и нестационарный. Первый характеризуется достижением постоянной величины изменившейся температуры на контролируемой поверхности, а второй – при частичном изменении таковой.
Стационарное измерение проводится опытным путем, требует большого количества времени, а также применения исследуемого металла в виде заготовок правильной формы, с плоскими поверхностями. Образец располагают между нагретой и охлажденной поверхностью, а после прикосновения плоскостей, измеряют время, за которое заготовка может увеличить температуру прохладной опоры на один градус по Кельвину. Когда рассчитывают теплопроводность, обязательно учитывают размеры исследуемого образца.
Нестационарную методику исследований используют в редких случаях из-за того, что результат, зачастую, бывает необъективным. В наши дни никто, кроме ученых, не занимается измерением коэффициента, все используют, давно выведенные опытным путем, значения для различных материалов. Это обусловлено постоянством данного параметра при сохранении химического состава изделия.
Применение
Агрегатное состояние материалов имеет отличительную структуру строения молекул и атомов. Именно это оказывает большое влияние на металлические изделия и их свойства, в зависимости от назначения.
Отличающийся химический состав узлов и деталей из железа, позволяет обладать различной теплопроводностью. Это связано со структурой таких металлов как чугун, сталь, медь и алюминий. Пористость чугунных изделий способствует медленному нагреванию, а плотность медной структуры – наоборот, ускоряет процесс теплоотдачи. Эти свойства используют для быстрого отвода тепла или постепенного нагревания продукции инертного назначения. Примером использования свойств металлических изделий является:
Медные трубки широко используют в радиаторах автомобильных систем охлаждения и кондиционеров, применяемых в быту. Чугунные батареи сохраняют тепло в квартире, даже при непостоянной подаче теплоносителя требуемой температуры. А радиаторы из алюминия, способствуют быстрой передаче тепла отапливаемому помещению.
При возникновении высокой температуры, в результате трения металлических поверхностей, также важно учитывать теплопроводность изделия. В любом редукторе или другом механическом оборудовании, способность отводить тепло, позволит деталям механизма сохранить прочность и не быть подвергнутыми разрушению, в процессе эксплуатации. Знание свойств теплопередачи различных материалов, позволит грамотно применить те или иные сплавы из цветных или черных металлов.
Высокая теплопроводность меди наряду с другими замечательными свойствами определила этому металлу значимое место в истории развития человеческой цивилизации. Изделия из меди и ее сплавов используются практически во всех сферах нашей жизни.
У чего лучше теплоотдача алюминий или медь
Дело в том что ввиду лучших теплоотводящих качеств меди меньшая площадь радиатора медного идентична по теплоотдаче большей поверхности алюминиевого
Мой медный толщиной сантиметра 2, в отличие от наверно 6-8 см алюминиевого, но работает лучше.
Кроме того не забывайте, что если медный сделан на заводе, а не в подвале, то пластины у него припаяны. к тубкам а не обжаты как на алюминиевом, и это весьма улучшает теплоотдачу.
Установка не более неправильная, чем на глаз сравнивать 16ти летний забитый алюминиевый радиатор с новым медным. Неудивительно, что он работает лучше.
Имхо, неправильная установка содержится во фразе: «Дело в том что ввиду лучших теплоотводящих качеств меди меньшая площадь радиатора медного идентична по теплоотдаче большей поверхности алюминиевого». Существуют понятия: теплоемкость, теплопроводность и теплоотдача. Например у компьютерного радиатора одинаково важны и теплопроводность, и теплоотдача — надо сначала тепло эффективно отвести от точечного источника (кристалла), а потом эффективно рассеять. У автомобильного радиатора теплопроводность материала играет меньшее значение ( трубки тонкие, потери на теплопроводность невелики, жидкость внутри трубок), зато огромную роль играет теплоотдача, которая зависит не столько от материалаи его теплопроводности, сколько от формы радиатора, площади его охлаждаемой поверхности.
Неплохо бы также, когда используется цитирование, не отрезать немаловажные предложения, несколько искажая смысл. (Повторю ещё раз: «Это ессно умозрительные заключения. Конечно, хорошо бы в лабораторных условиях теплоотдачу померять, но кто бы это сделал. «). Это так, к слову пришлось.
Теплопроводность меди — две стороны одной медали
Высокая теплопроводность меди наряду с другими замечательными свойствами определила этому металлу значимое место в истории развития человеческой цивилизации. Изделия из меди и ее сплавов используются практически во всех сферах нашей жизни.
1 Медь — коротко про теплопроводность
Коэффициент теплопроводности меди при температуре 20-100 °С составляет 394 Вт/(м*К) — выше только у серебра. Стальной прокат уступает меди по этому показателю почти в 9 раз, а железо — в 6. Различные примеси по-разному влияют на физические свойства металлов. У меди скорость передачи тепла снижается при добавлении в материал или попадании в результате технологического процесса таких веществ, как:
Высокая теплопроводность характеризуется быстрым распространением энергии нагрева по всему объему предмета. Эта способность обеспечила меди широкое применение в любых системах теплообмена. Ее используют при изготовлении трубок и радиаторов холодильников, кондиционеров, вакуумных установок, автомашин для отвода избыточного тепла охлаждающей жидкости. В отопительных приборах подобные изделия из меди служат для обогрева.
Способность меди проводить тепло снижается при нагреве. Значения коэффициента теплопроводности меди в воздухе зависит от температуры последнего, которая влияет на теплоотдачу (охлаждение). Чем выше температура окружающей среды, тем медленнее остывает металл и ниже его теплопроводность. Поэтому во всех теплообменниках используют принудительный обдув вентилятором — это повышает эффективность работы устройств и одновременно поддерживает тепловую проводимость на оптимальном уровне.
2 Теплопроводность алюминия и меди — какой металл лучше?
Теплопроводность алюминия и меди различна — у первого она меньше, чем у второго, в 1,5 раза. У алюминия этот параметр составляет 202-236 Вт/(м*К) и является достаточно высоким по сравнению с другими металлами, но ниже, чем у золота, меди, серебра. Область применения алюминия и меди, где требуется высокая теплопроводность, зависит от ряда других свойств этих материалов.
Алюминий не уступает меди по антикоррозионным свойствам и превосходит в следующих показателях:
Аналогичное изделие, но выполненное из алюминия, значительно легче, чем из меди. Так как по весу металла требуется меньше в 3 раза, а цена его ниже в 3,5 раза, то алюминиевая деталь может быть дешевле примерно в 10 раз. Благодаря этому и высокой теплопроводности алюминий нашел широкое применение при производстве посуды, пищевой фольги для духовок. Так как этот металл мягкий, то в чистом виде не используется — распространены в основном его сплавы (наиболее известный — дюралюминий).
В различных теплообменниках главное — это скорость отдачи избыточной энергии в окружающую среду. Эта задача решается интенсивным обдувом радиатора посредством вентилятора. При этом меньшая теплопроводность алюминия практически не отражается на качестве охлаждения, а оборудование, устройства получаются значительно легче и дешевле (к примеру, компьютерная и бытовая техника). В последнее время в производстве наметилась тенденция к замене в системах кондиционирования медных трубок на алюминиевые.
Медь практически незаменима в радиопромышленности, электронике в качестве токопроводящего материала. Благодаря высокой пластичности из нее можно вытягивать проволоку диаметром до 0,005 мм и делать другие очень тонкие токопроводящие соединения, используемые для электронных приборов. Более высокая, чем у алюминия, проводимость обеспечивает минимальные потери и меньший нагрев радиоэлементов. Теплопроводность позволяет эффективно отводить выделяемое при работе тепло на внешние элементы устройств — корпус, подводящие контакты (к примеру, микросхемы, современные микропроцессоры).
Шаблоны из меди используют при сварке, когда необходимо на стальную деталь сделать наплавку нужной формы. Высока теплопроводность не позволит медному шаблону соединиться с приваренным металлом. Алюминий в таких случаях применять нельзя, так как велика вероятность его расплавления или прожига. Медь также используют при сварке угольной дугой — стержень из этого материала служит неплавящимся катодом.
3 Минусы высокой теплопроводности
Низкая теплопроводность во многих случаях является нужным свойством — на этом основана теплоизоляция. Использование медных труб в системах отопления приводит к гораздо большим потерям тепла, чем при применении магистралей и разводок из других материалов. Медные трубопроводы требуют более тщательной теплоизоляции.
У меди высокая теплопроводность, что обуславливает достаточно сложный процесс монтажных и других работ, имеющих свою специфику. Сварка, пайка, резка меди требует более концентрированного нагрева, чем для стали, и зачастую предварительного и сопутствующего подогрева металла.
При газовой сварке меди необходимо использование горелок мощностью на 1-2 номера выше, чем для стальных деталей такой же толщины. Если медь толще 8-10 мм, рекомендуется работать с двумя или даже тремя горелками (часто сварку производят одной, а другими осуществляют подогрев). Сварочные работы на переменном токе электродами сопровождаются повышенным разбрызгиванием металла. Резак, достаточный для толщины высокохромистой стали в 300 мм, подойдет для резки латуни, бронзы (сплавы меди) толщиной до 150 мм, а чистой меди всего в 50 мм. Все работы связаны с значительно большими затратами на расходные материалы.
4 Как у меди повысить теплопроводность?
Медь — один из главных компонентов в электронике, используется во всех микросхемах. Она отводит и рассеивает тепло, образующееся при прохождении тока. Ограничение быстродействия компьютеров обусловлено увеличением нагрева процессора и других элементов схем при росте тактовой частоты. Разбиение на несколько ядер, работающих одновременно, и другие способы борьбы с перегревом себя исчерпали. В настоящее время ведутся разработки, направленные на получение проводников с более высокой электропроводимостью и теплопроводностью.
Открытый недавно учеными графен способен значительно увеличить теплопроводность медных проводников и их возможность к рассеиванию тепла. При проведении эксперимента слой меди покрыли графеном со всех сторон. Это улучшило теплоотдачу проводника на 25 %. Как объяснили ученые, новое вещество меняет структуру передачи тепла и позволяет энергии двигаться в металле свободнее. Изобретение находится на стадии доработки — при эксперименте использовался медный проводник гораздо больших размеров, чем в процессоре.
Медный или алюминиевый радиатор?
Решил немного отдохнуть от работы и залез на один из популярных сайтов, где люди задают вопросы и, соответственно, получают ответы — правда не всегда верные. Так вот, тема была про алюминиевые и медные радиаторы, и что лучше.
«Алюминий плохо берет тепло, но хорошо его отдает, а медь хорошо забирает тепло и плохо его отдает. » — пунктуацию не сохранил, пардоньте
Заползая обратно на стул вспомнил аналогичную тему на одном из технических форумов открытую года четыре назад, где топикстартер усиленно доказывал, что алюминий лучше всех передает тепло. Неужели большинство людей думают, что если радиаторы к компьютерам и силовым транзисторам делают из него, то он лучше?
Из моей предыдущей статьи «Медные прокладки — за/против» мы уже знаем теплопроводность этих двух металлов: медь = 390 Вт/(м*к) и алюминий = 230 Вт/(м*к). Отсюда делаем простой вывод, что последний будет забирать тепло у источника нагрева хуже, в более чем, полтора раза.
Далее, посмотрим насколько тяжело температуре «пробираться» по этим проводникам:
И здесь у оппонента выигрывает медь, которая имеет сопротивление передачи тепла в два раза ниже, таким образом тепло по этому металлу «пройдет» расстояние больше и быстрее (не совсем верно, но так будет понятнее).
Обратимся к еще одной характеристике этих двух «соперников» — теплоемкости:
И здесь у нас тот же самый фаворит. Но не стоит забывать еще одну характеристику — плотность меди в три раза больше алюминия, поэтому килограмм того и другого металла будет отличаться объемом. И, естественно, один и тот же объем будет отличаться весом, где выигрывает уже «белый металл».
Теперь, руководствуясь вышеприведенными данными, я «сломаю» ваш мозг :). Пример — два кулера из интернет-магазина с одинаковыми (почти, вровень не нашел) показателями рассеиваемой мощности.
Почему медный Zalman легче и меньше алюминиевого CoolerMaster-а?
Потому что медь лучше и быстрее распределяет нагрев по всей поверхности, где его снимает кулер. Для этого ей не нужны объемные и частые ребра как у алюминиевого радиатора, что придает охлаждающей системе «лишний» вес.
Единственное, почему «красный» металл не стал таким популярным, как соперник — это цена и сложность обработки из-за высокой температуры плавления.
А каково ваше мнение касательно этого вопроса? Пишите в комментарии.