эндрю гласснер глубокое обучение без математики
Глубокое обучение без математики. Основы
Автор: Гласснер Э.
Дата выхода: май 2019 года
Формат: 160 * 220 мм
Бумага: офсетная
Обложка: Твердый переплет
Объем, стр.: 578
ISBN: 978-5-97060-701-5
Аннотация
Издание предназначено для всех читателей, кто хочет использовать глубокое обучение в своей работе. Это программисты, инженеры, ученые, руководители, музыканты, врачи и все, кто хочет работать с большими объемами данных, извлекая из них полезную информацию или формируя новые данные.
Продолжение книги будет посвящено практическому воплощению алгоритмов глубокого обучения и выйдет в издательстве «ДМК Пресс» летом 2019 года.
Оплата
Наш интернет-магазин работает только по предоплате!
Мы принимаем следующие виды оплаты:
Вы так же можете выбрать оплату по платежной квитанции и оплатить по ней покупку в отделении любого банка.
Юридические лица могут выбрать счёт на оплату.
Возврат денежных средств возможен в случаях:
Возврат не проводится в случаях:
Для оформления возврата обращайтесь по электронной почте dmkpress.help@gmail.com.
Доставка:
Курьерская доставка по Москве в течение 7 дней после оплаты заказа.
Стоимость доставки:
Самовывоз возможен в течение суток после оплаты.
Адрес для самовывоза:
115487, г. Москва, проспект Андропова, 38
Доставка почтой России: от 7 до 28 дней с момента оплаты заказа.
Стоимость доставки:
Глубокое обучение без математики. 2 тома
Если вы интересуетесь машинным обучением (Machine Learning) и глубоким обучением (Deep Learning), то этот двухтомник для вас. В первом томе изложены фундаментальные основы глубокого обучения. Второй том посвящен нейронным сетям – быстро развивающемуся направлению машинного обучения.
После прочтения этой книги вы будете уметь:
разрабатывать и обучать собственные нейронные сети
использовать нейронные сети для понимания данных и создания новых данных
присваивать описательные категории текстам, изображениям и другим типам данных
предсказывать последующие значения последовательности данных
исследовать структуру ваших данных
обрабатывать ваши данные с максимальной эффективностью;
использовать языки программирования и библиотеку DL по своему желанию
воспринимать новые знания и идеи и применять их на практике
получать удовольствие от обсуждения глубокого обучения с другими специалистами.
Мы используем серьезный, но дружелюбный подход, сопровождаемый большим количеством иллюстраций. Мы делаем это без каких-либо кодов и без всякой математики, за исключением умножения.
Список книг:
Глубокое обучение без математики. Т. 1: Основы
Глубокое обучение без математики. Т. 2: Практика
Год: 2019-2020
Жанр Компьютерная литература, Информатика и вычислительная техника
Формат: pdf
Страниц: 1196
Язык: русский
Размер: 185.5 Мб
Глубокое обучение без математики. Том 1. Основы
Посоветуйте книгу друзьям! Друзьям – скидка 10%, вам – рубли
Эта и ещё 2 книги за 299 ₽
Отзывы 4
Перевод плохой. Для новичков не рекомендую – только запутает. Для давно устоявшейся терминологии используется художественный перевод. Примеры: обучение с учителем (supervised learning) – наблюдаемое обучение, обучение с подкреплением (reinforcement learning) – усиленное обучение. К сожалению, это очень затрудняет восприятие текста.
Перевод плохой. Для новичков не рекомендую – только запутает. Для давно устоявшейся терминологии используется художественный перевод. Примеры: обучение с учителем (supervised learning) – наблюдаемое обучение, обучение с подкреплением (reinforcement learning) – усиленное обучение. К сожалению, это очень затрудняет восприятие текста.
Сначала купил 2 том, а потом уже первый. Практика оказалась лучшим педагогом чем теория. Для меня это серия как ИТ для не ИТ-шников. От себя рекомендую менеджерам проектов, продуктовым менеджерам и др. специалистам.
Сначала купил 2 том, а потом уже первый. Практика оказалась лучшим педагогом чем теория. Для меня это серия как ИТ для не ИТ-шников. От себя рекомендую менеджерам проектов, продуктовым менеджерам и др. специалистам.
Сама книга отличная, перевод ужасен, переводчик не ориентируется в терминах темы.
Также есть прямые неточности в русской версии, которые дополнительно затрудняют понимание.
Например true negative в тексте на иллюстрации названо ложнонегативной ошибкой.
Сама книга отличная, перевод ужасен, переводчик не ориентируется в терминах темы.
Также есть прямые неточности в русской версии, которые дополнительно затрудняют понимание.
Например true negative в тексте на иллюстрации названо ложнонегативной ошибкой.
Узнал об этой книге здесь, спасибо литресу и издательству за наводку.
Но читаю в оригинале, потому-что перевод мягко говоря разочаровал, согласен с @ta.dl – он не помогает, а скорее мешает и вводит в заблужение, хотя сам оригинал написан живым и понятным языком.
Саму книгу очень рекомендую – автор честно заработал сильно больше 5-ти звездочек, а вот перевод – нет, и переводчик и издательство к сожалению схалтурили, им – кол.
Эндрю гласснер глубокое обучение без математики
Самообучающиеся системы [2009] Николенко
Книга посвящена одной из самых практически применимых, активных и быстроразвивающихся областей современной информатики, объединяющей множество методов из различных областей математики и не только математики – машинному обучению. В книге обсуждаются основы многих базовых аппаратов машинного обучения: деревья принятия решений, искусственные нейронные сети, генетические алгоритмы, байесовские классификаторы, алгоритмы кластеризации и обучение с подкреплением.
Изложение ведется увлекательным языком, книгу интересно читать, и она доступна даже не очень подготовленному читателю. Однако при этом сохраняется математическая строгость, а наиболее сложные части изложения заинтересуют и профессионалов. Книга снабжена обширной аннотированной библиографией.
Читать книгу смогут даже старшеклассники, хотя она будет представлять несомненный профессиональный интерес и для студентов всех курсов, изучающих математику и информатику, а также для специалистов и аспирантов, ведущих исследования в соответствующих областях. В этом отношении значительная часть материала монографии сможет сыграть роль углубленного учебного пособия.
Прикладное глубокое обучение. Подход к пониманию глубоких нейронных сетей на основе метода кейсов [2020] Умберто Микелуччи
Затронуты расширенные темы глубокого обучения: оптимизационные алгоритмы, настройка гиперпараметров, отсев и анализ ошибок, стратегии решения типичных задач во время тренировки глубоких нейронных сетей. Описаны простые активационные функции с единственным нейроном (ReLu, сигмоида и Swish), линейная и логистическая регрессии, библиотека TensorFlow, выбор стоимостной функции, а также более сложные нейросетевые архитектуры с многочисленными слоями и нейронами.
Показана отладка и оптимизация расширенных методов отсева и регуляризации, настройка проектов машинного обучения, ориентированных на глубокое обучение с использованием сложных наборов данных. Приведены результаты анализа ошибок нейронной сети с примерами решения проблем, возникающих из-за дисперсии, смещения, переподгонки или разрозненных наборов данных. По каждому техническому решению даны примеры решения практических задач.
Reinforcement Learning: An Introduction, 2nd Edition [2018] Richard S. Sutton, Andrew G Barto
The significantly expanded and updated new edition of a widely used text on reinforcement learning, one of the most active research areas in artificial intelligence. Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. InReinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field’s key ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating coverage of other topics.
Like the first edition, this second edition focuses on core online learning algorithms, with the more mathematical material set off in shaded boxes.
Part I covers as much of reinforcement learning as possible without going beyond the tabular case for which exact solutions can be found. Many algorithms presented in this part are new to the second edition, including UCB, Expected Sarsa, and Double Learning.
Part II extends these ideas to function approximation, with new sections on such topics as artificial neural networks and the Fourier basis, and offers expanded treatment of off-policy learning and policy-gradient methods.
Part III has new chapters on reinforcement learning’s relationships to psychology and neuroscience, as well as an updated case-studies chapter including AlphaGo and AlphaGo Zero, Atari game playing, and IBM Watson’s wagering strategy. The final chapter discusses the future societal impacts of reinforcement learning.
Reinforcement Learning Algorithms with Python: Learn, understand, and develop smart algorithms for addressing AI challenges [2019] Andrea Lonza
Develop self-learning algorithms and agents using TensorFlow and other Python tools, frameworks, and libraries
• Learn, develop, and deploy advanced reinforcement learning algorithms to solve a variety of tasks
• Understand and develop model-free and model-based algorithms for building self-learning agents
• Work with advanced Reinforcement Learning concepts and algorithms such as imitation learning and evolution strategies
Reinforcement Learning (RL) is a popular and promising branch of AI that involves making smarter models and agents that can automatically determine ideal behavior based on changing requirements. This book will help you master RL algorithms and understand their implementation as you build self-learning agents.
Starting with an introduction to the tools, libraries, and setup needed to work in the RL environment, this book covers the building blocks of RL and delves into value-based methods, such as the application of Q-learning and SARSA algorithms. You’ll learn how to use a combination of Q-learning and neural networks to solve complex problems. Furthermore, you’ll study the policy gradient methods, TRPO, and PPO, to improve performance and stability, before moving on to the DDPG and TD3 deterministic algorithms. This book also covers how imitation learning techniques work and how Dagger can teach an agent to drive. You’ll discover evolutionary strategies and black-box optimization techniques, and see how they can improve RL algorithms. Finally, you’ll get to grips with exploration approaches, such as UCB and UCB1, and develop a meta-algorithm called ESBAS. By the end of the book, you’ll have worked with key RL algorithms to overcome challenges in real-world applications, and be part of the RL research community.
What you will learn
• Develop an agent to play CartPole using the OpenAI Gym interface
• Discover the model-based reinforcement learning paradigm
• Solve the Frozen Lake problem with dynamic programming
• Explore Q-learning and SARSA with a view to playing a taxi game
• Apply Deep Q-Networks (DQNs) to Atari games using Gym
• Study policy gradient algorithms, including Actor-Critic and REINFORCE
• Understand and apply PPO and TRPO in continuous locomotion environments
• Get to grips with evolution strategies for solving the lunar lander problem
Who this book is for
If you are an AI researcher, deep learning user, or anyone who wants to learn reinforcement learning from scratch, this book is for you. You’ll also find this reinforcement learning book useful if you want to learn about the advancements in the field. Working knowledge of Python is necessary.
Эволюционные нейросети на языке Python [2020] Омельяненко
Эта книга дает всестороннее представление о нейроэволюции–подходе к обучению искусственных нейронных сетей, который использует эволюционные алгоритмы,чтобы упростить процесс решения сложных задач в таких областях, как игры, робототехника и моделирование естественных процессов.
Читатель начнет знакомство с ключевыми концепциями и методами нейроэволюции, написав несложный код на языке Python, а затем получит практический опыт работы с популярными библиотеками Python и научится решать распространенные и нестандартные прикладные задачи,используя алгоритмы на основе нейроэволюции.
Речь пойдет о том, как адаптировать методы нейроэволюции к существующим проектам нейронных сетей для повышения эффективности обучения и принятия решений; в завершение будет рассказано о топологиях нейронных сетей и о том, как нейроэволюция позволяет развивать сложную топологию из простейшей базовой структуры. Издание предназначено для специалистов в области машинного обучения и искусственного интеллекта, которые стремятся реализовать алгоритмы нейроэволюции с нуля. Наличие базовых знаний в области глубокого обучения и нейронных сетей, а также программирования на языке Python обязательно.
Python: Искусственный интеллект, большие данные и облачные вычисления [2020] Пол Дейтел, Харви Дейтел
Главы 1–5 и фрагменты глав 6–7 сделают понятными примеры решения задач искусственного интеллекта из глав 11–16. Вы познакомитесь с обработкой естественного языка, анализом эмоций в Twitter®, когнитивными вычислениями IBM® Watson™, машинным обучением с учителем в задачах классификации и регрессии, машинным обучением без учителя в задачах кластеризации, распознавания образов с глубоким обучением и сверточными нейронными сетями, рекуррентными нейронными сетями, большими данными с Hadoop®, Spark™ и NoSQL, IoT и многим другим. Вы поработаете (напрямую или косвенно) с облачными сервисами, включая Twitter, Google Translate™, IBM Watson, Microsoft® Azure®, OpenMapQuest, PubNub и др.
Машинный интеллект. Очерки по теории машинного обучения и искусственного интеллекта [2019] Шумский
В книге дается обзор современного состояния и перспектив развития исследований по машинному интеллекту. Предложен подход к созданию «сильного» искусственного интеллекта с использованием принципов работы человеческого мозга.
Каждая глава представляет собой самостоятельный очерк, ставящий и разрешающий актуальные вопросы современности: Какие задачи предстоит решить на пути совершенствования машинного обучения? Как машинный интеллект может способствовать технологическому развитию общества в целом и частного предпринимательства в частности? Чего можно ожидать от машинного интеллекта в ближайшие 10-15 лет?
Адресована студентам, исследователям и разработчикам приложений в области искусственного интеллекта, а также всем, кого интересуют принципы работы мозга с позиций теории машинного обучения.
Генетические алгоритмы на Python [2020] Вирсански
Там, где традиционные алгоритмы бесполезны или не дают результата за обозримое время, на помощь могут прийти генетические алгоритмы. Они позволяют решить целый комплекс сложных задач, в том числе связанных с искусственным интеллектом, упростить оптимизацию непрерывных функций, выполнять реконструкцию изображений и многое другое. Книга поможет программистам, специалистам по обработке данных и энтузиастам ИИ, интересующимся генетическими алгоритмами, подступиться к стоящим перед ними задачам, связанным с обучением, поиском и оптимизацией, а также повысить качество и точность результатов в уже имеющихся приложениях. Для изучения материала книги требуются владение языком Python на рабочем уровне и базовые знания математики и информатики.
Генетические алгоритмы — это семейство алгоритмов поиска, оптимизации и обучения, черпающее идеи из естественной эволюции. Благодаря имитации эволюционных процессов генетические алгоритмы способы преодолевать трудности, присущие традиционным алгоритмам поиска, и находить высококачественные решения в самых разных задачах. Эта книга поможет освоить мощный, но в то же время простой подход к применению генетических алгоритмов, написанных на языке Python, и познакомиться с последними достижениями в области искусственного интеллекта.
После обзора генетических алгоритмов и описания принципов автор рассказывает об их отличиях от традиционных алгоритмов и о типах задач, к которым они применимы, как то: планирование, составление расписаний, игры и анализ функций. Вы также узнаете о том, как генетические алгоритмы позволяют повысить качество моделей машинного и глубокого обучения, решать задачи обучения с подкреплением и выполнять реконструкцию изображений. Наконец, будет упомянуто о некоторых родственных технологиях, открывающих новые возможности для будущих приложений.
Книга адресована программистам, специалистам по обработке данных и энтузиастам ИИ, желающим применить генетические алгоритмы в решении практических задач. Требуются владение языком Python на рабочем уровне и базовые знания математики и информатики.
Прикладное глубокое обучение. Подход к пониманию глубоких нейронных сетей на основе метода кейсов [2020] Умберто Микелуччи
Затронуты расширенные темы глубокого обучения: оптимизационные алгоритмы, настройка гиперпараметров, отсев и анализ ошибок, стратегии решения типичных задач во время тренировки глубоких нейронных сетей. Описаны простые активационные функции с единственным нейроном (ReLu, сигмоида и Swish), линейная и логистическая регрессии, библиотека TensorFlow, выбор стоимостной функции, а также более сложные нейросетевые архитектуры с многочисленными слоями и нейронами.
Показана отладка и оптимизация расширенных методов отсева и регуляризации, настройка проектов машинного обучения, ориентированных на глубокое обучение с использованием сложных наборов данных. Приведены результаты анализа ошибок нейронной сети с примерами решения проблем, возникающих из-за дисперсии, смещения, переподгонки или разрозненных наборов данных. По каждому техническому решению даны примеры решения практических задач.
Введение в глубокое обучение [2020] Евгений Черняк (Юджин Чарняк)
Автор этой книги Евгений Черняк — давний исследователь искусственного интеллекта, специализирующийся на обработке естественного языка, революцию в котором сделало глубокое обучение. К сожалению, ему потребовалось много времени, чтобы это понять. Можно сказать в его оправдание, что нейронные сети угрожают революцией уже третий раз, а отнюдь не первый. Тем не менее автор внезапно оказался далеко позади и изо всех сил пытался наверстать упущенное. Именно поэтому он сделал то, что сделал бы на его месте любой уважающий себя профессор: запланировал преподавание курса и начал ускоренно изучать материал, просматривая веб-страницы.
Этим объясняется несколько выдающихся особенностей этой книги. Во-первых, краткость. Мы учимся медленно. Во-вторых, она сильно зависит от проекта. Многие публикации, особенно в области информатики, постоянно имеют противоречия между организацией темы и организацией материалов, связанных с конкретными проектами. Подобное разделение зачастую является хорошей идеей, но мы считаем, что материал по информатике лучше изучать при написании программ, поэтому книга во многом отражает привычки автора в преподавании. Таков был самый удобный способ написания книги, и мы надеемся, что многие из читателей тоже найдут ее полезной.
Хотя многие практикующие в области информатики сочтут книгу полезной по той же причине, по которой автор ее написал в первую очередь как преподаватель, он верит своим ученикам, поэтому книга изначально задумана в качестве учебника для курса по глубокому обучению.
Курс, который автор преподает в Брауне, предназначен как для выпускников, так и для других студентов, и охватывает весь материал. Здесь требуются как линейная алгебра, так и многовариантное исчисление. Хотя фактическое количество материала по линейной алгебре не так уж велико, студенты сказали, что без него им было бы довольно сложно разобраться в многослойных сетях и необходимых им тензорах. Тем не менее многовариантное исчисление было им гораздо понятней. Это явно появляется только в главе 1, когда обратное распространение создается «с нуля», и не удивительно, если окажется полезной дополнительная лекция по частным производным. И наконец, есть предпосылка для вероятности и статистики. Это упрощает диспозицию, и автор, конечно же, хочет побудить студентов пройти такой курс. Автор также предполагает элементарные знания читателей по программированию на языке Python. Хотя этот материал не включен в книгу, но у автора есть дополнительная «лаборатория» по основам языка Python.
Создаем нейронную сеть [2017] Тарик Рашид
Эта книга представляет собой введение в теорию и практику создания нейронных сетей. Она предназначена для тех, кто хочет узнать, что такое нейронные сети, где они применяются и как самому создать такую сеть, не имея опыта работы в данной области. Автор простым и понятным языком объясняет теоретические аспекты, знание которых необходимо для понимания принципов функционирования нейронных сетей и написания соответствующих программных инструкций. Изложение материала сопровождается подробным описанием процедуры поэтапного создания полностью функционального кода, который реализует нейронную сеть на языке Python и способен выполняться даже на таком миниатюрном компьютере, как Raspberry Pi Zero.
Основные темы книги:
— нейронные сети и системы искусственного интеллекта;
— структура нейронных сетей;
— сглаживание сигналов, распространяющихся по нейронной сети, с помощью функции активации;
— тренировка и тестирование нейронных сетей;
— интерактивная среда программирования IPython;
— использование нейронных сетей в качестве классификаторов объектов;
— распознавание образов с помощью нейронных сетей.
Нейронные сети и глубокое обучение [2020] Чару Аггарвал
В книге рассматриваются как классические, так и современные модели глубокого обучения. Главы книги можно разбить на три группы.
— Основы нейронных сетей. Суть многих традиционных моделей машинного обучения можно понять, рассматривая их как частные случаи нейронных сетей. В первых двух главах основной упор сделан на понимании взаимосвязи традиционного машинного обучения и нейронных сетей. Будет показано, что метод опорных векторов, линейная и логистическая регрессия, сингулярное разложение, факторизация матриц и рекомендательные системы являются именно такими частными случаями. Наряду с ними рассматриваются и такие сравнительно новые методы конструирования признаков, как word2vec.
— Фундаментальные понятия нейронных сетей. Главы 3 и 4 посвящены подробному обсуждению процессов тренировки и регуляризации нейронных сетей. В главах 5 и 6 рассмотрены сети радиально-базисных функций (RBF) и ограниченные машины Больцмана.
— Дополнительные вопросы нейронных сетей. В главах 7 и 8 обсуждаются рекуррентные и сверточные нейронные сети. Главы 9 и 10 посвящены более сложным темам, таким как глубокое обучение с подкреплением, нейронные машины Тьюринга, самоорганизующиеся карты Кохонена и генеративно-состязательные сети.
Книга предназначена для студентов старших курсов, исследователей и специалистов-практиков. Там, где это возможно, автор обращает особое внимание на прикладные аспекты использования каждого класса методов.
Обработка естественного языка в действии [2020] Хобсон
Последние достижения в области глубокого обучения позволяют создавать приложения, с исключительной точностью распознающие текст и речь. Что в результате? Появляются чат-боты, ведущие диалог не хуже реальных людей, программы, эффективно подбирающие резюме под заданную вакансию, развивается превосходный предиктивный поиск, автоматически генерируются аннотации документов. Благодаря новым приемам и инструментам, таким как Keras и Tensorflow, сегодня возможно как никогда просто реализовать качественную обработку естественного языка (NLP).
«Обработка естественного языка в действии» станет вашим руководством по созданию программ, способных распознавать и интерпретировать человеческий язык. В издании рассказано, как с помощью готовых пакетов на языке Python извлекать из текста смыслы и адекватно ими распоряжаться. В книге дается расширенная трактовка традиционных методов NLP, что позволит задействовать нейронные сети, современные алгоритмы глубокого обучения и генеративные приемы при решении реальных задач, таких как выявление дат и имен, составление текстов и ответов на неожиданные вопросы.
Машинное обучение: карманный справочник. Краткое руководство по методам структурированного машинного обучения на Python [2020] Мэтт Харрисон
В книгу Машинное обучение: карманный справочник, включены подробные примеры и комментарии, которые помогут вам оперативно ориентироваться в основах структурированного машинного обучения(МО). Автор, Мэтт Харрисон, предлагает ценный справочник, который вы можете использовать как дополнительное пособие при обучении МО и в качестве удобного ресурса, когда погружаетесь в ваш следующий проект машинного обучения. Приведенные фрагменты кода имеют такой размер, чтобы их можно было использовать и адаптировать в ваших собственных проектах МО.
Книга, идеально подходящая для программистов, аналитиков данных и инженеров искусственного интеллекта, содержит обзор процесса машинного обучения и знакомит вас с классификацией структурированных данных. В книге рассматриваются различные библиотеки и модели, их компромиссы, настройка и интерпретация. Кроме всего прочего вы изучите методы кластеризации, регрессии и уменьшения размерности.
Основные темы книги
• Классификация с использованием набора данных Titanic
• Как очистить данные и справиться с их недостатком
• Разведочный анализ данных
• Общие этапы предварительной обработки с использованием выборки данных
• Выбор признаков, полезных для модели
• Выбор модели
• Оценка метрики и классификации
• Примеры регрессии с использованием нескольких методов машинного обучения
• Метрики для оценки регрессии
• Кластеризация
• Уменьшение размерности
• Конвейеры Scikit-learn
• При использовании этой книги предполагается знание языка программирования Python.
В книге демонстрируется, как использовать различные вспомогательные библиотеки Python для решения реальных задач МО.
Эта книга не заменит учебный курс по МО, но должна служить ориентиром того, что может охватывать прикладной курс машинного обучения. Автор использует ее в качестве справочного материала для курсов по анализу данных и машинному обучению, который он преподает.
Автор книги Мэтт Харрисон считает, что его книга — лучший сборник ресурсов и примеров для решения задач прогнозного моделирования, если у вас есть структурированные данные.
Глубокое обучение без математики. Основы [2019] [Том 1] Эндрю Гласснер
Издание предназначено для всех читателей, кто хочет использовать глубокое обучение в своей работе. Это программисты, инженеры, ученые, руководители, музыканты, врачи и все, кто хочет работать с большими объемами данных, извлекая из них полезную информацию или формируя новые данные.
Прочитав книгу, вы научитесь:
• разрабатывать и обучать собственные нейронные сети;
• использовать нейронные сети для понимания данных и создания новых данных;
• присваивать описательные категории текстам, изображениям и другим типам данных;
• предсказывать последующие значения последовательности данных;
• исследовать структуру ваших данных;
• обрабатывать ваши данные с максимальной эффективностью;
• использовать языки программирования и библиотеку DL по своему желанию;
• воспринимать новые знания и идеи и применять их на практике;
• получать удовольствие от обсуждения глубокого обучения с другими специалистами.
Глубокое обучение без математики. Практика [2020] [Том 2] Эндрю Гласснер
Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems [2019]
Aurélien Géron
Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how.
By using concrete examples, minimal theory, and two production-ready Python frameworks—Scikit-Learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you’ve learned, all you need is programming experience to get started.
• Explore the machine learning landscape, particularly neural nets
• Use Scikit-Learn to track an example machine-learning project end-to-end
• Explore several training models, including support vector machines, decision trees, random forests, and ensemble methods
• Use the TensorFlow library to build and train neural nets
• Dive into neural net architectures, including convolutional nets, recurrent nets, and deep reinforcement learning
• Learn techniques for training and scaling deep neural nets
Прикладное машинное обучение с помощью Scikit-Learn и TensorFlow. Концепции, инструменты и техники для создания интеллектуальных систем [2018] Жерон
«Эта книга — замечательное введение в теорию и практику решения задач с помощью нейронных сетей. Она охватывает ключевые моменты, необходимые для построения эффективных приложений, а также обеспечивает достаточную основу для понимания результатов новых исследований по мере их появления. Я рекомендую эту книгу всем, кто заинтересован в освоении практического машинного обучения».
— Пит Уорден, технический руководитель направления TensorFlow.
Благодаря серии недавних достижений глубокое обучение значительно усилило всю область машинного обучения. В наше время даже программисты, почти ничего не знающие об этой технологии, могут использовать простые и эффективные инструменты для реализации программ, которые способны обучаться на основе данных. В настоящем практическом руководстве показано, что и как следует делать.
За счет применения конкретных примеров, минимума теории и двух фреймворков Python производственного уровня — Scikit-Learn и TensorFlow — автор книги Орельен Жерон поможет вам получить интуитивное представление о концепциях и инструментах, предназначенных для построения интеллектуальных систем. Вы узнаете о ряде приемов, начав с простой линейной регрессии и постепенно добравшись до глубоких нейронных сетей. Учитывая наличие в каждой главе упражнений, призванных закрепить то, чему вы научились, для начала работы нужен лишь опыт программирования.
— Исследуйте область машинного обучения, особенно нейронные сети.
— Используйте Scikit-Learn для отслеживания проекта машинного обучения от начала до конца.
— Исследуйте некоторые обучающие модели, включая методы опорных векторов, деревья принятия решений, случайные леса и ансамблевые методы.
— Применяйте библиотеку TensorFlow для построения и обучения нейронных сетей.
— Исследуйте архитектуры нейронных сетей, включая сверточные сети, рекуррентные сети и глубокое обучение с подкреплением.
— Освойте приемы для обучения и масштабирования глубоких нейронных сетей.
— Используйте практические примеры кода, не овладевая чрезмерно теорией машинного обучения или деталями алгоритмов.