учение о последовательности формирования и возрасте горных пород слагающих земную кору называется
Геохронология
(от Гео… и Хронология)
геологическое летосчисление, учение о хронологической последовательности формирования и возрасте горных пород, слагающих земную кору. Различают относительную и абсолютную (или ядерную) Г. Относительная Г. заключается в определении относительного возраста горных пород, который даёт представление о том, какие отложения в земной коре являются более молодыми и какие более древними, без оценки длительности времени, протекшего с момента их образования. Абсолютная Г. устанавливает т. н. абсолютный возраст горных пород, т. е. возраст, выраженный в единицах времени, обычно в миллионах лет. (В последнее время термин «абсолютный возраст» часто заменяют названием изотопный, или радиологический, возраст.)
Относительная Г. Для определения относительного возраста слоистых осадочных и пирокластических пород (См. Пирокластические породы), а также вулканических пород (лав) широко применяется принцип последовательности напластования [т. н. закон Стенсена (Стено)]. Согласно этому принципу, каждый вышележащий пласт (при ненарушенной последовательности залегания слоистых горных пород) моложе нижележащего. Относительный возраст интрузивных пород и других неслоистых геологических образований определяется по соотношению с толщами слоистых горных пород. Послойное расчленение геологического разреза (См. Геологический разрез), т. е. установление последовательности напластования слагающих его пород, составляет стратиграфию (См. Стратиграфия) данного района. Для сравнения стратиграфии удалённых друг от друга территорий (районов, стран, материков) и установления в них толщ близкого возраста используется Палеонтологический метод, основанный на изучении захороненных в пластах горных пород окаменевших остатков вымерших животных и растений (морских раковин, отпечатков листьев и т.д.). Сопоставление окаменелостей различных пластов позволило установить процесс необратимого развития органического мира и выделить в геологической истории Земли ряд этапов со свойственным каждому из них комплексом животных и растений. Исходя из этого, сходство флоры и фауны в пластах осадочных пород может свидетельствовать об одновременности образования этих пластов, т. е. об их одновозрастности. Впервые этот метод определения относительного возраста горных пород был применен в начале 19 в. У. Смитом в Великобритании и Ж. Кювье во Франции. Тогда ему не было дано надёжного теоретического обоснования. Кювье объяснял различия в составе комплексов ископаемых, встречаемых в пластах горных пород, вымиранием организмов в результате внезапных геологических катастроф и появлением затем новых их комплексов. Последователи Кювье, в том числе французский геолог и палеонтолог А. Д’ Орбиньи, предполагали, что смена органического мира Земли после каждой катастрофы связана с «творческими актами божества». Учение Ч. Лайеля (См. Лайель) о медленных естественных преобразованиях лика Земли и классические труды Ч. Дарвина и В. О. Ковалевского (См. Ковалевский) об эволюционном развитии органического мира дали материалистическое обоснование палеонтологическому методу.
В результате трудов нескольких поколений геологов была установлена общая последовательность накопления слоев земной коры, получившая название стратиграфической шкалы. Верхняя часть её (фанерозой) составлена при помощи палеонтологического метода с большой тщательностью. Для нижележащего отрезка шкалы (докембрий), соответствующего огромной по мощности толще пород, палеонтологический метод имеет ограниченное применение из-за плохой сохранности или отсутствия окаменелостей. Вследствие этого нижняя — докембрийская — часть стратиграфической шкалы расчленена менее детально. По степени метаморфизма горных пород (См. Метаморфизм горных пород) и др. признакам докембрий делится на архей (или археозой) и протерозой. Верхняя — фанерозойская — часть шкалы делится на три группы (или эратемы): палеозойскую, мезозойскую и кайнозойскую. Каждая группа делится на системы (всего в фанерозое 12 систем, см. табл. 1). Каждая система подразделяется на 2—3 отдела; последние в свою очередь делятся на ярусы и подчинённые им зоны. Как системы, так и многие ярусы могут быть прослежены на всех континентах, но большая часть зон имеет только местное значение. Наикрупнейшим подразделением шкалы, объединяющим несколько групп, служит эонотема (например, палеозойская, мезозойская и кайнозойская группы объединяются в фанерозойскую эонотему, или фанерозой). Стратиграфическая шкала является основой для создания соответствующей ей геохронологической шкалы, которая отражает последовательность отрезков времени, в течение которых формировались те или иные толщи пород. Каждому подразделению стратиграфической шкалы отвечают определённые подразделения геохронологической шкалы. Так, время, в течение которого отложились породы любой из систем, носит название периода. Отделам, ярусам и зонам отвечают промежутки времени, которые называются соответственно эпоха, век, время; группам соответствуют эры. Крупнейшему стратиграфическому подразделению — эонотеме — отвечает хронологический термин — эон. Существуют два эона — докембрийский, или криптозойский, и фанерозойский. Продолжительность более древнего — докембрийского эона составляет около 5 /6 всей геологической истории Земли. Каждый из периодов фанерозойского эона, за исключением последнего — антропогенового (четвертичного), охватывает примерно равновеликие интервалы времени. Антропогеновая система, соответствующая времени существования человека, намного короче. Расчленение антропогена проводится, в отличие от других периодов, по фауне наземных млекопитающих, которая эволюционирует гораздо быстрее, чем морская фауна (в составе последней за время антропогена не произошло принципиальных изменений), а также на основе изучения ледниковых отложений, характеризующих эпохи всеобщего похолодания. Некоторые исследователи считают выделение антропогеновых отложений [см. Антропогеновая система (период)] в особую систему неправомочным и рассматривают её как завершающий этап предшествующего неогенового периода.
Подразделения стратиграфической шкалы, выделенные с помощью палеонтологического метода, и соответствующие им подразделения геологического времени, объединённые в единой геохронологической шкале, были утверждены в 1881 на 2-м Международном геологическом конгрессе в Болонье и с тех пор являются общепринятыми во всём мире. В дальнейшем, благодаря совершенствованию методов палеонтологические исследования и накоплению новых данных, в первоначальную схему геохронологии Земли вносятся некоторые изменения и уточнения.
В 1907 по инициативе Э. Резерфорда Б. Болтвуд в Канаде определил возраст ряда радиоактивных минералов по накоплению в них свинца. В СССР инициатором радиологических исследований был В. И. Вернадский. Его начинания продолжили В. Г. Хлопин, И. Е. Старик, Э. К. Герлинг. В 1937 была создана Комиссия по определению абсолютного возраста геологических формаций.
Цифры, полученные в результате первых определений абсолютного возраста пород, позволили английскому геологу А. Холмсу в 1938 предложить первую геохронологическую шкалу фанерозоя. Эта шкала неоднократно уточнялась и перерабатывалась. В табл. 1 она воспроизводится на основании новейших данных (Г. Д. Афанасьев, 1968).
Табл. 1. — Геохронологическая шкала фанерозоя
Группа (эра) | Система (период) | Начало, млн. лет назад | Продолжи- тельность, млн. лет |
---|---|---|---|
Кайнозойская (продолжительность | Антропогеновая (четвертичная) | 1,5* | 1,5* |
67 млн. лет) | Неогеновая | 25 | 23,5 |
Палеогеновая | 67 | 42 | |
Мезозойская (продолжительность | Меловая | 137 | 70 |
163 млн. лет) | Юрская | 195 | 58 |
Триасовая | 230 | 35 | |
Палеозойская (продолжительность | Пермская | 285 | 55 |
340 млн. лет) | Каменноугольная | 350 | 75-65 |
Девонская | 410 | 60 | |
Силурийская | 440 | 30 | |
Ордовикская | 500 | 60 | |
Кембрийская | 570 | 70 |
*По разным данным, от 600 тыс. до 3,5 млн. лет.
Геохронологическая шкала докембрия (см. табл. 2) из-за отсутствия остатков скелетной фауны построена главным образом по данным многократных определении абсолютного возраста магматических пород на различных материках, что позволило установить одновременность крупных тектономагматических циклов, лежащих в основе деления докембрия (см. Докембрийские эпохи складчатости).
Табл. 2. — Геохронологическая шкала докембрия
Подразделения докембрия | Начало, млн. лет назад | Продолжительность, млн. лет | |
---|---|---|---|
верхний | |||
Протерозой | (рифей) | 1600 | 1030 |
средний | 1900 | 300 | |
нижний | 2600 | 700 | |
Архей | >3500 | >900 |
Каждое из принятых в СССР подразделений докембрия — архей и протерозой — по длительности значительно превышает отдельные группы фанерозоя. Протерозой подразделяется на три части — нижний, средний и верхний. Последний вошёл в Г. под названием рифея (См. Рифей), который многие геологи считают подразделением, соответствующим группе.
Наиболее древние породы, найденные на Земле, имеют возраст около 3500 млн. лет и знаменуют собой начало архея. Пород, возникших в интервале времени от 3500 до 4500 млн. лет (предполагаемый возраст Земли), с достоверностью не обнаружено.
Методы определения абсолютного возраста. Накопление продуктов радиоактивного распада в течение времени, положенное в основу определений абсолютного возраста, выражается формулой: D = Р (е λt — 1), где D — число атомов нерадиоактивного вещества, возникших за время t; Р — число атомов радиоактивного элемента в настоящий момент; е — основание натуральных логарифмов; λ — константа распада, которая показывает, какая часть атомов радиоактивного элемента распадается за единицу времени (год, сутки, минуты и т.д.) по отношению к первоначальному количеству. Иногда скорость распада выражают периодом полураспада (T) — временем, в течение которого любое количество вещества распадается наполовину. Отношение D/P является функцией возраста (t) минерала. Так:
Отсюда возраст образца минерала (t) может быть вычислен по формуле:
Истинный возраст может быть определён в том случае, если отношение D/P изменяется только от радиоактивного распада, т. е. минерал представляет собой замкнутую систему.
Основные типы радиоактивного распада, используемые для определения возраста, следующие:
238 U→ 206 Pb + 8 4 He,
235 U→ 207 Pb + 7 4 He,
232 Th→ 208 Pb + 6 4 He,
В зависимости от конечных продуктов распада выделяют следующие методы ядерной Г: свинцовый (уран-торий-свинцовый), гелиевый, аргоновый (аргон-калиевый), кальциевый, стронциевый (стронциево-рубидиевый) и осмиевый. Наиболее широкое применение из них получили свинцовый, аргоновый и стронциевый.
Свинцовый метод основан на исследованиях радиогенного свинца в минералах (уранините, монаците, цирконе, ортите). Он является наиболее достоверным, поскольку решение задачи о возрасте урано-ториевого минерала достигается по трем независимым уравнениям:
Pb, U и Th обозначают содержание в минералах изотопов свинца, урана и тория; λ1, λ2 и λ3 — константы распада изотопов 238 U, 235 U, 232 Th.
Если разделить уравнение (1) на (2), то получится уравнение
Это уравнение даёт наиболее близкие к истинным значения возраста, что связано с малой его зависимостью от возможных потерь урана и свинца минералом на протяжении его геологической жизни. Оно позволяет вычислить возраст только по одному измеренному отношению , поскольку в настоящее время отношение
равно 137,7 и практически во всех минералах и горных породах одинаково. Совпадение значений возраста, полученных по всем четырём уравнениям, свидетельствует о хорошей сохранности исследованного минерала, правильности проведённых анализов и достоверности вычисленного абсолютного возраста. Измерение изотопного состава свинца производится на масс-спектрометре (см. Масс-спектроскопия).
Однако чаще различные уравнения дают разные значения возраста одного и того же минерала. В этом случае для установления истины прибегают к построению диаграммы в координатах 206 Pb/ 238 U: 207 Pb/ 235 U (см. ниже). На неё наносят кривую OA (конкордия), вычисленную теоретически для разных возрастов, и прямую OB (изохрона), на которую ложатся результаты измерений для нескольких исследованных одновозрастных минералов. Истинным возрастом считается значение на пересечении кривой OA с прямой OB.
Может быть вычислен также возраст обычных свинцовых минералов, если известен изотопный состав Pb. Обычный свинец состоит из смеси четырёх изотопов 204 Pb, 206 Pb, 207 Pb, 208 Pb, из которых 204 Pb не связан с радиоактивным распадом и его содержание условно принимается за единицу. Остальные изотопы порождаются и постепенно накапливаются в результате радиоактивного распада урана и тория, причём темп прироста того или иного изотопа определяется соответствующей константой распада. Поэтому свинец разных эпох имеет различный изотопный состав: свинец более древних эпох содержит пониженное количество изотопов с массами 206, 207, 208, а в свинце более молодых эпох количество их увеличено относительно 204 Pb. Возраст, вычисленный по изотопному составу рудного свинца, принято называть модельным возрастом, поскольку он справедлив лишь для такой модели (системы), в которой отношение Pb: U: Th изменяется во времени только вследствие радиоактивного распада. В действительности имеют место как совпадения модельного возраста с истинным для ряда месторождений, так и существенные расхождения, которые становятся более частыми в молодых геологических формациях.
Аргоновый метод. Основан на радиогенном накоплении аргона в калиевых минералах. Будучи более доступным благодаря лёгкости получения необходимого материала (калиевые минералы) и относительно простой его обработке, пользуется большой популярностью. Отрицательной чертой его является отсутствие внутреннего контроля (одно уравнение). Как показали многочисленные экспериментальные исследования, калиевые минералы сравнительно легко теряют радиогенный аргон. В меньшей степени это относится к слюдам и в значительно большей степени к полевым шпатам, что делает их малопригодными для определения возраста. Важной положительной чертой аргон-калиевого метода является возможность применения его для определения возраста осадочных отложений по минералу Глаукониту. Опыт определения возраста неизмененных глауконитов как молодого (мезокайнозойского), так и древнего возраста показал, что глауконит хорошо удерживает аргон и калий вне зависимости от времени. Несмотря на свою сравнительно малую устойчивость, минерал этот удобен тем, что даже при небольших изменениях, ставящих под сомнение пригодность данного образца, он сразу же обнаруживает изменение окраски и химического состава.
Стронциевый метод, основанный на радиоактивном распаде 87 Rb и превращении его в 87 Sr, в СССР не приобрёл пока большого распространения. Причина заключается в том, что в районах с высоким общим содержанием рубидия последний может быть привнесён в минералы значительно позже времени их образования, в результате чего при определении возраста этих минералов возможны сильные искажения в сторону «омоложения»; наоборот, в районах с интенсивным щелочным метасоматозом рубидий легко выносится из минералов и тогда значение возраста по 87 Sr/ 87 Rb становится сильно преувеличенным. Обычно при измерении возраста по 87 Sr/ 87 Rb из гранита выделяют составляющие его минералы и в каждом из них определяют 87 Sr/ 86 Sr и 87 Rb/86Sr. На диаграмме в координатах 87 Sr/ 86 Sr: 87 Rb/86Sr данные анализов отдельных минералов гранита располагаются на одной прямой — изохроне, вытянутой вправо вверх. Тангенс угла наклона изохроны с осью абсцисс представляет собой величину 87 Sr/ 87 Rb, определяющую возраст данной породы.
Б. М. Келлер, А. И. Тугаринов, Г. В. Войткевич.
Геохронологическая шкала. Геохронология и стратиграфия
Геохронологическая шкала | |||
Эон | Эра | Период | |
Фанерозой | Кайнозой | Четвертичный | |
Неоген | |||
Палеоген | |||
Мезозой | Мел | ||
Юра | |||
Триас | |||
Палеозой | Пермь | ||
Карбон | |||
Девон | |||
Силур | |||
Ордовик | |||
Кембрий | |||
Докембрий | Протерозой | Эдиакарий | |
Криогений | |||
Тоний | |||
Мезопротерозой | Стений | ||
Эктазий | |||
Калимий | |||
Палеопротерозой | Статерий | ||
Ороризий | |||
Риасий | |||
Сидерий | |||
Архей | Неоархей | ||
Мезоархей | |||
Палеоархей | |||
Эоархей | |||
Катархей |
Геохронологическая шкала активнее всего применяется в геологии и палеонтологии, также находит применение в палеоэкологии, палеогеографии, палеопочвоведении и др.
Установлено, что возраст нашей планеты оценивается в 4,5-4,6 млрд лет.
История создания геохронологической шкалы берет свое начало со 2 й половины 19 века.
В шкале история Земли подразделяется на 2 главных этапа: Докембрий и Фанерозой
Докембрий включает в себя Архей и Протерозой, Фанерозой состоит из Палеозоя, Мезозоя и Кайнозоя
Архей знаменателен появлением бактерий-анаэробов и формированием бескислородной атмосферы
В протерозое, самом длительном периоде в истории Земли, оформился озоновый слой и современный уровень мирового океана, появились многоклеточные, начинает образовываться почвенный слой
Палеозой считается эрой древней жизни.
Помимо впечатляющих эволюционных изменений растительного и животного мира, а также трендов климатических изменений, Палеозой примечателен формированием многих полезных ископаемых: гипсов, ангидритов, солей (каменных и калийных), фосфоритов, меди, кобальта, железа, золота, нефтеносных горизонтов и др.
Мезозой рассматривается как эра тектонической, климатической и эволюционной активности.
Это также самый теплый период в Фанерозое.
Залежи полезных ископаемых чаще всего датируются Юрским и Меловым периодом, причем ископаемые Мела встречаются чаще
Кайнозой начался 66 миллионов лет назад и продолжается до сих пор.
Этот этап характеризуется наибольшим биоразнообразием и относительной упорядоченностью и успокоенностью геотектоники.
система | отдел | ярус | Возраст, млн лет назад |
---|---|---|---|
Пермь | Нижний | Ассельский | |
Карбон | Верхний | Гжельский | 303,7—298,9 |
Касимовский | 307,2—303,4 | ||
Средний | Московский | 311,7—307,2 | |
Башкирский | 323,0—311,7 | ||
Нижний | Серпуховский | 330,9—323,0 | |
Визейский | 346,7—330,9 | ||
Турнейский | 358,9—346,7 |
Геохронология. Периодизация геологической истории
Геологам приходится иметь дело с толщами горных пород, накопившимися за длительную геологическую историю планеты. Необходимо знать, какие из слагающих изучаемую территорию пород моложе, а какие древнее, в какой последовательности они формировались, к каким интервалам геологической истории относится время их образования, а также уметь сопоставлять по возрасту удалённые друг от друга толщи горных пород.
Учение о последовательности формирования и возрасте горных пород называется геохронологией. Различаются методы относительной и методы абсолютной геохронологии.
Относительная геохронология
Эти методы базируются на нескольких простых принципах. В 1669 г. Николо Стено сформулировал принцип суперпозиции, гласящий, что в ненарушенном залегании каждый вышележащий слой моложе нижележащего. Обратим внимание, что в определении подчёркивается применимость принципа только в условиях ненарушенного залегания.
Следующий важнейший принцип, известный как принцип пересечений, сформулирован Джеймсом Хаттоном. Этот принцип гласит, что любое тело, пересекающее толщу слоев, моложе этих слоев.
Нужно отметить и ещё один важный принцип, гласящий, что время преобразования или деформации пород моложе, чем возраст образования этих пород.
Рассмотрим использование этих принципов на примере толщ осадочных пород, прорванных несколькими секущими магматическими телами.
Последовательность событий следующая. Первоначально происходило накопление осадочных толщ нижнего слоя (1), затем, последовательно накопление вышележащих слоев (2, 3, 4, 5), каждый из которых моложе нижележащего. Накопление осадочных пород в подавляющем большинстве случаев происходит в форме горизонтально лежащих слоев, так первоначально залегали и сформированные слои (1-5). Позднее эти толщи были деформированы (6), и в них внедрилось тело магматических пород 7. Затем, вновь горизонтально, началось накопление вышележащего слоя, залегающего на и внедрившемся магматическом теле. При этом, учитывая, что образующийся слой лежит на выровненной горизонтальной поверхности, очевидно, что его накоплению предшествовало выравнивание территории – её размыв (8). Вслед за размывом территории накопился следующий слой (9). Наиболее молодым образованием является магматическое тело 10.
Подчеркнём, что, рассматривая историю геологического развития территории, разрез которой изображён на рисунке, мы пользовались исключительно относительным временем, определяя лишь последовательность образования тел.
Среди биостратиграфических методов долгое время оставался важнейшим метод руководящих форм. Руководящими формами называют остатки вымерших организмов соответствующие следующим критериям:
При определении возраста среди найденных в изучаемом слое ископаемых выбираются наиболее для него характерные, затем они сопоставляются с атласами руководящих форм, описывающими, какому интервалу времени свойственны те или иные формы. Первый из таких атласов был создан ещё в середине XIX века палеонтологом Г. Бронном.
На сегодняшний день основным в биостратиграфии является метод анализа органических комплексов. При применении этого метода вывод об относительном возрасте строится на сведениях обо всём комплексе окаменелостей, а не на находках единичных руководящих форм, что значительно повышает точность.
В ходе геологических исследований стоят задачи не только расчленения толщ по возрасту и отнесения их к какому-либо интервалу геологической истории, но и сопоставления – корреляции – удалённых друг от друга одновозрастных толщ. Наиболее простым методом выявления одновозрастных толщ является прослеживание слоёв на местности от одного обнажения к другому. Очевидно, что этот метод эффективен только в условиях хорошей обнажённости. Более универсальным является биостратиграфический метод сопоставления характера органических остатков в удалённых разрезах – одновозрастные слои обладают одинаковым комплексом окаменелостей. Этот метод позволяет проводить региональную и глобальную корреляцию разрезов.
Принципиальная модель использования окаменелостей для корреляции удалённых разрезов отражена на рисунке.
Одновозрастными являются слои, содержащие одинаковый комплекс окаменелостей
Абсолютная геохронология
Методы абсолютной геохронологии позволяют определить возраст геологических объектов и событий в единицах времени. Среди этих методов наиболее распространены методы изотопной геохронологии, основанные на подсчёте времени распада радиоактивных изотопов, заключенных в минералах (или, например, в остатках древесины или в окаменелых костях животных).
Сущность метода заключена в следующем. В состав некоторых минералов входят радиоактивные изотопы. С момента образования такого минерала в нём протекает процесс радиоактивного распада изотопов, сопровождающийся накоплением продуктов распада. Распад радиоактивных изотопов протекает самопроизвольно, с постоянной скоростью, не зависящей от внешних факторов; количество радиоактивных изотопов убывает в соответствии с экспоненциальным законом. Принимая во внимания постоянство скорости распада, для определения возраста достаточно установить количество оставшегося в минерале радиоактивного изотопа и количество образовавшегося при его распаде стабильного изотопа. Эта зависимость описывается главным уравнением геохронологии:
Для определения возраста используются многие радиоактивные изотопы: 238 U, 235 U, 40 K, 87 Rb, 147 Sm и др. Названия изотопно-геохронологических методов обычно образуются из названий радиоактивных изотопов и конечных продуктов их распада: уран-свинцовый, калий-аргоновый и т.д. Результаты определения возраста геологических объектов выражаются в 106 и 109 лет, или в значениях Международной системы единиц (СИ): Ma и Ga. Эта аббревиатура означает, соответственно, «млн. лет» и « млрд. лет» (от лат. Mega anna – млн. лет, Giga anna – млрд. лет).
В ходе лабораторных исследований определяются содержания 87 Rb и 87 Sr, при этом содержание последнего складывается из суммы стронция, изначально содержащегося в минерале ( 87 Sr)0, и стронция, возникшего в процессе радиоактивного распада 87 Rb за период существования минерала:
На практике измеряются не содержания указанных изотопов, а их отношения к стабильному изотопу 86Sr, что даёт более точные результаты. Вследствие этого уравнение приобретает вид
В полученном уравнении имеются два неизвестных: время t и начальное отношение изотопов стронция. Для решения задачи анализируются несколько образцов, результаты наносятся в виде точек на график в координатах 87 Sr/ 86 Sr – 87 Rb/ 86 Sr. В случае корректно отобранных проб все точки ложатся вдоль одной прямой – изохроны (следовательно, имеют один и тот же возраст). Возраст анализируемых образцов рассчитывается по величине угла наклона изохроны, а начальное стронциевое отношение определяется по пересечению изохронной оси 87 Sr/ 86 Sr.
В случае если на графике точки не ложатся на одну линию можно говорить о некорректности подбора проб. Во избежание этого необходимо соблюдать следующие главные условия:
Не останавливаясь на методики определения возраста другими методами, отметим лишь особенности некоторых из них.
В настоящее время наиболее точным считается самарий – неодимовый метод, принятый в качестве стандарта, с которым сравниваются данные других методов. Это связан о с тем, что в силу геохимических особенностей данные элементы наименее подвержены влиянию наложенных процессов, часто значительн о искажающих или сводящих на нет результаты определений возраста. Метод основан на распаде изотопа 147 Sm с образованием в качестве конечного продукта распада 144 Nd.
Калий – аргоновый метод основан на распаде радиоактивного изотопа 40 К. Этот метод давно и широко используется для определения возраста всех генетических типов горных пород. Он наиболее эффективен при определении времени формирования осадочных пород и минералов, например, глауконита. Применительно к магматическим и особенно метаморфическим породам, затронутым наложенными изменениями, этот метод часто даёт «омоложенные» датировки, что связано с потерей подвижного аргона.
Радиоуглеродный метод основан на распаде изотопа 14 С, образующегося в верхних слоях атмосферы в результате воздействия космического излучения на атмосферные газы (азот, аргон, кислород). В последствии 14 С, как и нерадиоактивный изотоп углерода, образует углекислый газ СО2, и в его составе вовлекается в фотосинтез, оказываясь таким образом в составе растений и, далее, пищевой цепочке передается животным. В гидросферу 14 С попадает в результате обмена СО2 между атмосферой и Мировым океаном, далее он оказывается в костях и карбонатных раковинах водных обитателей. Интенсивное перемешивание воздушных масс в атмосфере и активное участие углерода в глобальном круговороте химических элементов приводит к выравниванию концентраций 14 С в атмосфере, гидросфере и биосфере. Для живых организмов равновесное состояние достигается при удельной активности 14 С, составляющей 13,56 ± 0.07 распадов в минуту на 1 грамм углерода. Если организм умирает, то прекращается поступление 14С; в результате радиоактивного распада (перехода в нерадиоактивный 14 N) удельная активность 14 С уменьшается. Измерив значение активности в пробе и сопоставив её со значением удельной активности в живой ткани, несложно рассчитать время прекращения жизнедеятельности организма по формуле
Радиоуглеродного датирование позволяет определять возраст образцов, содержащих углерод (кости, зубы, раковины, древесина, уголь и т.д.) возрастом до 70 тыс. лет. Это определяет его использование в четвертичной геологии и, особенно, в археологии.
В завершение рассмотрения методов изотопной геологии следует отметить, что, несмотря на получение «абсолютных», выраженных в годах, датировок, мы имеет дело с модельным возрастом – полученные результаты неизбежно содержат некоторую ошибку и, более того, продолжительность астрономического года в ходе длительной геологической истории менялась.
Изучение ритмичности ленточных глин позволяет не только определять абсолютный возраст, но и проводить корреляцию расположенных неподалёку друг от друга разрезов, сопоставляя мощности слоёв.
На сходном принципе основан и подсчёт годичных слоёв в осадках соляных озёр, где летом, за счёт повышения испарения, происходит активное осаждение солей.
К недостаткам сезонно-климатических методов следует отнести их неуниверсальность.
Периодизация геологической истории. Cтратиграфическая и геохронологическая шкалы
Оперируя категорией относительного времени необходимо иметь универсальную шкалу периодизации истории. Так, применительно к истории человечества, мы употребляем выражения «до нашей эры», «в эпоху Возрождения», «в XX веке» и т.п., относя какое-либо событие или предмет материальной культуры к определённому временному интервалу. Аналогичный подход принят и в геологии, для этих целей разработаны Международная геохронологическая шкала и Международная стратиграфическая шкала.
Стратиграфическая шкала – шкала, показывающая последовательность и соподчинённость стратиграфических подразделений, слагающих земную кору и отражающих пройденные землёй этапы исторического развития. Объектом стратиграфической шкалы являются слои горных пород. Основа современной стратиграфической шкалы была разработана ещё в первой половине XIX века и была принята в 1881 г. на II сессии Международного геологического конгресса в Болонье. Позднее стратиграфическая шкала была дополнена геохронологической шкалой.
Геохронологическая шкала – шкала относительного геологического времени, показывающая последовательность и соподчинённость основных этапов геологической истории Земли и развития жизни на ней. Объектом геохронологической шкалы является геологическое время.
Шкала геологического времени (или геохронометрическая шкала) представляет собой последовательный ряд датировок нижних границ общих стратиграфических подразделений, выраженных в единицах времени (чаще в миллионах лет) и вычисленных с помощью методов абсолютного датирования.
Объектом геохронологической шалы служат геохронологические подразделения – интервалы геологического времени, в течение которого образовались горные породы, входящие в состав данного стратиграфического подразделения.
Всем стратиграфическим подразделениям соответствуют подразделения геохронологической шкалы.
Стратиграфические подразделения | Геохронологические позразделения |
акротема | акрон |
эонотема | эон |
эратема (группа) | эра |
система | период |
отдел | эпоха |
ярус | век |
зона | фаза |
Эратемы, в свою очередь, включают в свой состав системы. Система – это отложения, образовавшиеся в течение периода; длительность периодов составляет десятки миллионов лет. Одна система от другой отличается комплексами фауны и флоры на уровне надсемейств, семейств и родов. В фанерозое выделяются 12 систем: кембрийская, ордовикская, силурийская, девонская, каменноугольная (карбоновая), пермская, триасовая, юрская,, меловая, палеогеновая, неогеновая и четвертичная (антропогеновая). Названия большинства систем происходят от географических названий тех местностей, где они были впервые установлены. Для каждой системы на геологических картах приняты определенный цвет, являющийся международным, и индекс, образованный начальной буквой латинского названия системы.
Наряду с основными подразделениями стратиграфической и геохронологической шкал применяются региональные и местные подразделения.
К региональным стратиграфическим подразделениям относятся горизонт и лона.
Лона является частью горизонта выделяемой по комплексу фауны и флоры, характерному для данного региона, и отражает определенную фазу развития органического мира данного региона. Название лоны даётся по виду-индексу. Геохронологическим эквивалентом лоны является время.
Местные стратиграфические подразделения представляют собой толщи пород, выделяемые по ряду признаков, в основном по литологическому или петрографическому составу.
Серия охватывает достаточно мощную и сложную по составу толщу горных пород для которых имеются какие-то общие признаки: сходные условия образования, преобладание определенных типов горных пород, близкая степень деформаций и метаморфизма и т.д. Серии обычно соответствуют единому крупному циклу развития территории.
Границы местных стратиграфических подразделений часто не совпадают с границами подразделений единой стратиграфической шкалы.